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GRADIENT INEQUALITIES
FOR AN INTEGRAL TRANSFORM OF

POSITIVE OPERATORS IN HILBERT SPACES

Silvestru Sever Dragomir

Abstract. For a continuous and positive function w (λ) , λ > 0 and µ a posi-
tive measure on (0,∞) we consider the following integral transform

D (w, µ) (T ) :=

∫ ∞
0

w (λ) (λ+ T )−1 dµ (λ) ,

where the integral is assumed to exist for T a positive operator on a complex
Hilbert space H.

Assume that A ≥ α > 0, δ ≥ B > 0 and 0 < m ≤ B − A ≤ M for some
constants α, δ, m, M. Then

0 ≤ −mD′(w, µ) (δ) ≤ D(w, µ) (A)−D(w, µ) (B) ≤ −MD′(w, µ) (α) ,

where D′(w, µ) (t) is the derivative of D(w, µ) (t) as a function of t > 0.
If f : [0,∞)→ R is operator monotone on [0,∞) with f (0) = 0, then

0 ≤
m

δ2

[
f (δ)− f ′ (δ) δ

]
≤ f (A)A−1 − f (B)B−1

≤
M

α2

[
f (α)− f ′ (α)α

]
.

Some examples for operator convex functions as well as for integral transforms
D (·, ·) related to the exponential and logarithmic functions are also provided.
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1. Introduction

Consider a complex Hilbert space (H, 〈·, ·〉). An operator T is said to be
positive (denoted by T ≥ 0) if 〈Tx, x〉 ≥ 0 for all x ∈ H and also an operator T
is said to be strictly positive (denoted by T > 0) if T is positive and invertible.
A real valued continuous function f on (0,∞) is said to be operator monotone
if f(A) ≥ f(B) holds for any A ≥ B > 0.

We have the following representation of operator monotone functions ([7],
[6]), see for instance [1, p. 144-145]:

Theorem 1. A function f : [0,∞)→ R is operator monotone in [0,∞) if
and only if it has the representation

f (t) = f (0) + bt+

∫ ∞
0

tλ

t+ λ
dµ (λ) ,

where b ≥ 0 and a positive measure µ on [0,∞) such that

(1.1)
∫ ∞
0

λ

1 + λ
dµ (λ) <∞.

A real valued continuous function f on an interval I is said to be operator
convex (operator concave) on I if

(OC) f ((1− λ)A+ λB) ≤ (≥) (1− λ) f (A) + λf (B)

in the operator order, for all λ ∈ [0, 1] and for every selfadjoint operator A
and B on a Hilbert space H whose spectra are contained in I. Notice that a
function f is operator concave if −f is operator convex.

We have the following representation of operator convex functions
([1, p. 147]):

Theorem 2. A function f : [0,∞)→ R is operator convex in [0,∞) with
f ′+ (0) ∈ R if and only if it has the representation

f (t) = f (0) + f ′+ (0) t+ ct2 +

∫ ∞
0

t2λ

t+ λ
dµ (λ) ,

where c ≥ 0 and a positive measure µ on [0,∞) such that (1.1) holds.
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We have the following integral representation for the power function when
t > 0, r ∈ (0, 1], see for instance [1, p. 145]

tr−1 =
sin (rπ)

π

∫ ∞
0

λr−1

λ+ t
dλ.

Observe that for t > 0, t 6= 1, we have∫ u

0

dλ

(λ+ t) (λ+ 1)
=

ln t

t− 1
+

1

1− t
ln

(
u+ t

u+ 1

)
for all u > 0. By taking the limit over u→∞ in this equality, we derive

ln t

t− 1
=

∫ ∞
0

dλ

(λ+ t) (λ+ 1)
,

which gives the representation for the logarithm

ln t = (t− 1)

∫ ∞
0

dλ

(λ+ 1) (λ+ t)

for all t > 0.
Motivated by these representations, we introduce, for a continuous and

positive function w (λ), λ > 0, the following integral transform

(1.2) D (w, µ) (t) :=

∫ ∞
0

w (λ)

λ+ t
dµ (λ) , t > 0,

where µ is a positive measure on (0,∞) and the integral (1.2) exists for all
t > 0. For µ the Lebesgue usual measure, we put

D (w) (t) :=

∫ ∞
0

w (λ)

λ+ t
dλ, t > 0.

If we take µ to be the usual Lebesgue measure and the kernel wr (λ) =
λr−1, r ∈ (0, 1], then

(1.3) tr−1 =
sin (rπ)

π
D (wr) (t) , t > 0.

For the same measure, if we take the kernel wln (λ) = (λ+ 1)
−1, t > 0, we

have the representation

(1.4) ln t = (t− 1)D (wln) (t) , t > 0.
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Assume that T > 0, then by the continuous functional calculus for selfad-
joint operators, we can define the positive operator

D (w, µ) (T ) :=

∫ ∞
0

w (λ) (λ+ T )
−1
dµ (λ) ,

where w and µ are as above. Also, when µ is the usual Lebesgue measure,
then

D (w) (T ) :=

∫ ∞
0

w (λ) (λ+ T )
−1
dλ,

for T > 0.
From (1.3) we have the representation

T r−1 =
sin (rπ)

π
D (wr) (T )

where T > 0 and from (1.4)

(T − 1)
−1

lnT = D (wln) (T )

provided T > 0 and T − 1 is invertible.
Assume that A ≥ α > 0, δ ≥ B > 0 and 0 < m ≤ B − A ≤ M for some

constants α, δ, m, M. In this paper we show among others that

0 ≤ −mD′(w, µ) (δ) ≤ D(w, µ) (A)−D(w, µ) (B) ≤ −MD′(w, µ) (α) ,

where D′(w, µ) (t) is the derivative of D(w, µ) (t) as a function of t > 0. Some
examples for operator monotone and operator convex functions as well as for
integral transformsD (·, ·) related to the exponential and logarithmic functions
are also provided.
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2. Main Results

Let f be an operator convex function on I. For A,B ∈ SAI (H), the class
of all selfadjoint operators with spectra in I, we consider the auxiliary function
ϕ(A,B) : [0, 1]→ B (H) defined by

ϕ(A,B) (t) := f ((1− t)A+ tB) .

For x ∈ H we can also consider the auxiliary function ϕ(A,B);x : [0, 1] → R
defined by

ϕ(A,B);x (t) :=
〈
ϕ(A,B) (t)x, x

〉
= 〈f ((1− t)A+ tB)x, x〉 .

We have the following basic fact ([2]):

Lemma 1. Let f be an operator convex function on I. For any A, B ∈
SAI (H), ϕ(A,B) is well defined and convex in the operator order. For any
A,B ∈ SAI (H) and x ∈ H the function ϕ(A,B);x is convex in the usual sense
on [0, 1].

A continuous function g : SAI (H) → B (H) is said to be Gâteaux differ-
entiable in A ∈ SAI (H) along the direction B ∈ B (H) if the following limit
exists in the strong topology of B (H)

(2.1) ∇gA (B) := lim
s→0

g (A+ sB)− g (A)
s

∈ B (H) .

If the limit (2.1) exists for all B ∈ B (H), then we say that g is Gâteaux
differentiable in A and we can write g ∈ G (A) . If this is true for any A in an
open set S from SAI (H) we write that g ∈ G (S) .

If g is a continuous function on I, by utilizing the continuous functional
calculus the corresponding function of operators will be denoted in the same
way.

For two distinct operators A, B ∈ SAI (H) we consider the segment of
selfadjoint operators

[A,B] := {(1− t)A+ tB | t ∈ [0, 1]} .

We observe that A, B ∈ [A,B] and [A,B] ⊂ SAI (H).
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We also have ([2]):

Lemma 2. Let f be an operator convex function on I and A, B ∈ SAI (H),
with A 6= B. If f ∈ G ([A,B]), then the auxiliary function ϕ(A,B) is differen-
tiable on (0, 1) and

ϕ′(A,B) (t) = ∇f(1−t)A+tB (B −A) .

In particular,

ϕ′(A,B) (0+) = ∇fA (B −A)

and

ϕ′(A,B) (1−) = ∇fB (B −A) .

and, see [2],

Lemma 3. Let f be an operator convex function on I and A, B ∈ SAI (H),
with A 6= B. If f ∈ G ([A,B]), then for 0 < t1 < t2 < 1

∇f(1−t1)A+t1B (B −A) ≤ ∇f(1−t2)A+t2B (B −A)

in the operator order.
In particular,

∇fA (B −A) ≤ ∇f(1−t1)A+t1B (B −A)

and

∇f(1−t2)A+t2B (B −A) ≤ ∇fB (B −A) .

Also, we have

(2.2) ∇fA (B −A) ≤ ∇f(1−t)A+tB (B −A) ≤ ∇fB (B −A)

for all t ∈ (0, 1) .

We have the following gradient inequalities:

Lemma 4. Let f be an operator convex function on I and A, B ∈ SAI (H),
with A 6= B. If f ∈ G ([A,B]), then

(2.3) ∇fB (B −A) ≥ f (B)− f (A) ≥ ∇fA (B −A) .
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Proof. By the properties of Bochner integral, we have

f (B)− f (A) = ϕ(A,B) (1)− ϕ(A,B) (0) =

∫ 1

0

ϕ′(A,B) (t) dt

=

∫ 1

0

∇f(1−t)A+tB (B −A) dt.

From (2.2) we have, by integration, that

∇fA (B −A) ≤
∫ 1

0

∇f(1−t)A+tB (B −A) dt ≤ ∇fB (B −A) ,

and the inequality (2.3) is proved. �

Let T , S > 0. The function f (t) = t−1 is operator Gâteaux differentiable
and the Gâteaux derivative is given by

(2.4) ∇fT (S) := lim
t→0

[
f (T + tS)− f (T )

t

]
= −T−1ST−1

for T , S > 0.
Using (2.4) for the operator convex function f (t) = t−1, we get

−D−1 (D − C)D−1 ≥ D−1 − C−1 ≥ −C−1 (D − C)C−1

that is equivalent to

(2.5) D−1 (D − C)D−1 ≤ C−1 −D−1 ≤ C−1 (D − C)C−1

for all C, D > 0. If

m ≤ D − C ≤M

for some constants m,M , then

mD−2 ≤ D−1 (D − C)D−1

and

C−1 (D − C)C−1 ≤MC−2

and by (2.5) we derive

mD−2 ≤ C−1 −D−1 ≤MC−2.
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Moreover, if C ≥ α > 0 and D ≤ δ, then we get

C−2 ≤ α−2 and D−2 ≥ δ−2,

which implies that

m

δ2
≤ C−1 −D−1 ≤ M

α2
.

We have the following lower and upper bounds forD(w, µ) (A)−D(w, µ) (B)
which is a nonnegative operator in the general case when B −A ≥ 0.

Theorem 3. Assume that A ≥ α > 0, δ ≥ B > 0 and 0 < m ≤ B−A ≤M
for some constants α, δ, m, M. Then

(2.6) 0 ≤ −mD′(w, µ) (δ) ≤ D(w, µ) (A)−D(w, µ) (B) ≤ −MD′(w, µ) (α) ,

where D′(w, µ) (t) is the derivative of D(w, µ) (t) as a function of t > 0.

Proof. We have

D(w, µ) (A)−D(w, µ) (B) =

∫ ∞
0

w (λ)
[
(λ+A)

−1 − (λ+B)
−1
]
dµ (λ) .

From (2.5) we get for C = λ+A and D = λ+B that

(λ+B)
−1

(B −A) (λ+B)
−1 ≤ (λ+A)

−1 − (λ+B)
−1(2.7)

≤ (λ+A)
−1

(B −A) (λ+A)
−1

for all λ ≥ 0.
If we multiply (2.7) by w (λ) ≥ 0 and integrate over dµ (λ) we get∫ ∞

0

w (λ) (λ+B)
−1

(B −A) (λ+B)
−1
dµ (λ)(2.8)

≤ D(w, µ) (A)−D(w, µ) (B)

≤
∫ ∞
0

w (λ) (λ+A)
−1

(B −A) (λ+A)
−1
dµ (λ) .

Since m ≤ B −A ≤M hence

m (λ+B)
−2 ≤ (λ+B)

−1
(B −A) (λ+B)

−1
,



256 Silvestru Sever Dragomir

which implies, by integration, that

m

∫ ∞
0

w (λ) (λ+B)
−2
dµ (λ)(2.9)

≤
∫ ∞
0

w (λ) (λ+B)
−1

(B −A) (λ+B)
−1
dµ (λ) .

Also
(λ+A)

−1
(B −A) (λ+A)

−1 ≤M (λ+A)
−2
,

which implies, by integration, that∫ ∞
0

w (λ) (λ+A)
−1

(B −A) (λ+A)
−1
dµ (λ)(2.10)

≤M
∫ ∞
0

w (λ) (λ+A)
−2
dµ (λ) .

Since B ≤ δ, then λ+B ≤ λ+ δ for all λ ≥ 0 which implies that (λ+B)
−1 ≥

(λ+ δ)
−1 and therefore (λ+B)

−2 ≥ (λ+ δ)
−2
. Consequently

(2.11) m

∫ ∞
0

w (λ) (λ+B)
−2
dµ (λ) ≥ m

∫ ∞
0

w (λ) (λ+ δ)
−2
dµ (λ) .

Also, since A ≥ α > 0, then λ+A ≥ λ+α > 0, which implies that (λ+A)
−1 ≤

(λ+ α)
−1, therefore (λ+A)

−2 ≤ (λ+ α)
−2 and

(2.12) M

∫ ∞
0

w (λ) (λ+A)
−2
dµ (λ) ≤M

∫ ∞
0

w (λ) (λ+ α)
−2
dµ (λ) .

From (2.8)–(2.12) we get

m

∫ ∞
0

w (λ) (λ+ δ)
−2
dµ (λ) ≤ D(w, µ) (A)−D(w, µ) (B)(2.13)

≤M
∫ ∞
0

w (λ) (λ+ α)
−2
dµ (λ) .

For h 6= 0 small,

D(w, µ) (t+ h)−D(w, µ) (t)
h

=
1

h

∫ ∞
0

(
w (λ)

t+ h+ λ
− w (λ)

t+ λ

)
dµ (λ)

= −
∫ ∞
0

w (λ)

(t+ h+ λ) (t+ λ)
dµ (λ) .
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By taking the limit over h→ 0 and using the properties of limits and integrals,
we get the derivative of D(w, µ) as

(2.14) D′(w, µ) (t) = −
∫ ∞
0

w (λ)

(t+ λ)
2 dµ (λ) ≤ 0, t > 0.

From (2.13) and (2.14) we derive (2.6). �

We know that for T > 0, we have the operator inequalities

(2.15) 0 <
∥∥T−1∥∥−1 ≤ T ≤ ‖T‖ .

Indeed, it is well known that, if P ≥ 0, then

|〈Px, y〉|2 ≤ 〈Px, x〉 〈Py, y〉

for all x, y ∈ H. Therefore, if T > 0, then

0 ≤ 〈x, x〉2 =
〈
T−1Tx, x

〉2
=
〈
Tx, T−1x

〉2
≤ 〈Tx, x〉

〈
TT−1x, T−1x

〉
= 〈Tx, x〉

〈
x, T−1x

〉
for all x ∈ H. If x ∈ H, ‖x‖ = 1, then

1 ≤ 〈Tx, x〉
〈
x, T−1x

〉
≤ 〈Tx, x〉 sup

‖x‖=1

〈
x, T−1x

〉
= 〈Tx, x〉

∥∥T−1∥∥ ,
which implies the following operator inequality∥∥T−1∥∥−1 1H ≤ T.
The second inequality in (2.15) is obvious.

Corollary 1. If A, B > 0 and B −A > 0, then

0 ≤ −
∥∥∥(B −A)−1∥∥∥−1D′(w, µ) (‖B‖) ≤ D(w, µ) (A)−D(w, µ) (B)(2.16)

≤ −‖B −A‖D′(w, µ)
(∥∥A−1∥∥−1) .
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Proof. Since A ≥
∥∥A−1∥∥−1 = α > 0, δ = ‖B‖ ≥ B > 0 and

0 < m =
∥∥∥(B −A)−1∥∥∥−1 ≤ B −A ≤ ‖B −A‖ =M,

then by (2.6) we get (2.16). �

The case of operator monotone functions is as follows:

Corollary 2. Assume that A ≥ α > 0, δ ≥ B > 0 and 0 < m ≤ B−A ≤
M for some constants α, δ, m, M. If f : [0,∞)→ R is operator monotone on
[0,∞), then

0 ≤ m

δ2
[f (δ)− f (0)− f ′ (δ) δ](2.17)

≤ f (A)A−1 − f (B)B−1 − f (0)
(
A−1 −B−1

)
≤ M

α2
[f (α)− f (0)− f ′ (α)α] .

If f (0) = 0, then

0 ≤ m

δ2
[f (δ)− f ′ (δ) δ] ≤ f (A)A−1 − f (B)B−1(2.18)

≤ M

α2
[f (α)− f ′ (α)α] .

Proof. We have that

f (t)− f (0)
t

− b =
∫ ∞
0

λ

λ+ t
dµ (λ) = D(`, µ) (t) , t > 0

with ` (λ) = λ, for some positive measure µ (λ) and nonnegative b. From this,

D′(`, µ) (t) = f ′ (t) t− f (t) + f (0)

t2
, t > 0.

Then by (2.6) we get

0 ≤ m

δ2
[f (δ)− f (0)− f ′ (δ) δ]

≤ [f (A)− f (0)]A−1 − [f (B)− f (0)]B−1 ≤ M

α2
[f (α)− f (0)− f ′ (α)α] ,

which is equivalent to (2.17). �
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Remark 1. If we write the inequality (2.18) for the operator monotone
function f (t) = tr, r ∈ (0, 1], then we get the power inequalities

0 < (1− r) δr−2m ≤ Ar−1 −Br−1 ≤ (1− r)αr−2M,

provided that A, B satisfy the assumptions in Corollary 2.
We also have the logarithmic inequalities

0 ≤ m

δ2

[
ln (δ + 1)− (δ + 1)

−1
δ
]
≤ A−1 ln (A+ 1)−B−1 ln (B + 1)

≤ M

α2

[
ln (α+ 1)− (α+ 1)

−1
α
]
.

We also have:

Corollary 3. Let A, B > 0 and B−A > 0. If f : [0,∞)→ R is operator
monotone on [0,∞), then

0 ≤ 1

‖B‖2
∥∥∥(B −A)−1∥∥∥ [f (‖B‖)− f (0)− f ′ (‖B‖) ‖B‖]

≤ f (A)A−1 − f (B)B−1 − f (0)
(
A−1 −B−1

)
≤ ‖B −A‖

∥∥A−1∥∥2 [f (∥∥A−1∥∥−1)− f (0)− f ′
(∥∥A−1∥∥−1)
‖A−1‖

]
.

If f (0) = 0, then

0 ≤ 1

‖B‖2
∥∥∥(B −A)−1∥∥∥ [f (‖B‖)− f ′ (‖B‖) ‖B‖](2.19)

≤ f (A)A−1 − f (B)B−1

≤ ‖B −A‖
∥∥A−1∥∥2 [f (∥∥A−1∥∥−1)− f ′

(∥∥A−1∥∥−1)
‖A−1‖

]
.

If we take f (t) = tr, r ∈ (0, 1] in (2.19), then we get the power inequalities

0 <
(1− r) ‖B‖r−2∥∥∥(B −A)−1∥∥∥ ≤ Ar−1 −Br−1 ≤ (1− r) ‖B −A‖

∥∥A−1∥∥2−r ,
for A, B > 0 and B −A > 0.
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We also have the logarithmic inequalities

0 ≤ 1

‖B‖2
∥∥∥(B −A)−1∥∥∥

[
ln (‖B‖+ 1)− (‖B‖+ 1)

−1 ‖B‖
]

≤ A−1 ln (A+ 1)−B−1 ln (B + 1)

≤ ‖B −A‖
∥∥A−1∥∥2 [ln(∥∥A−1∥∥−1 + 1

)
−
(∥∥A−1∥∥−1 + 1

)−1 ∥∥A−1∥∥−1] .
The case of operator convex functions is as follows:

Corollary 4. Assume that A, B are as in Corollary 2. If f : [0,∞)→ R
is operator convex on [0,∞), then

0 ≤ 2m

δ2

(
f (δ)− f (0)

δ
−
f ′ (δ) + f ′+ (0)

2

)
(2.20)

≤ f (A)A−2 − f (B)B−2 − f (0)
(
A−2 −B−2

)
− f ′+ (0)

(
A−1 −B−1

)
≤ 2M

α2

(
f (α)− f (0)

α
−
f ′ (α) + f ′+ (0)

2

)
.

If f (0) = 0, then

0 ≤ 2m

δ2

(
f (δ)

δ
−
f ′ (δ) + f ′+ (0)

2

)
(2.21)

≤ f (A)A−2 − f (B)B−2 − f ′+ (0)
(
A−1 −B−1

)
≤ 2M

α2

(
f (α)

α
−
f ′ (α) + f ′+ (0)

2

)
.

Proof. We have that

f (t)− f (0)− f ′+ (0) t

t2
− c =

∫ ∞
0

λ

λ+ t
dµ (λ) = D(`, µ) (t) , t ≥ 0

with ` (λ) = λ for some positive measure µ (λ) and nonnegative c.
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We have that

D′(`, µ) (t) =
(
f ′ (t)− f ′+ (0)

)
t2 − 2t

(
f (t)− f (0)− f ′+ (0) t

)
t4

=
2

t2

(
f ′ (t) + f ′+ (0)

2
− f (t)− f (0)

t

)
.

Since

D(`, µ) (A)−D(`, µ) (B)

=
[
f (A)− f (0)− f ′+ (0)A

]
A−2 −

[
f (B)− f (0)− f ′+ (0)B

]
B−2

= f (A)A−2 − f (B)B−2 − f (0)
(
A−2 −B−2

)
− f ′+ (0)

(
A−1 −B−1

)
,

−mD′(`, µ) (δ) = 2m

δ2

(
f (δ)− f (0)

δ
−
f ′ (δ) + f ′+ (0)

2

)
and

−MD′(`, µ) (α) = 2M

α2

(
f (α)− f (0)

α
−
f ′ (α) + f ′+ (0)

2

)
,

hence by (2.6) we derive (2.20). �

Corollary 5. Let A, B > 0 and B−A > 0. If f : [0,∞)→ R is operator
convex on [0,∞), then

0 ≤ 2

‖B‖2
∥∥∥(B −A)−1∥∥∥

(
f (‖B‖)− f (0)

‖B‖
−
f ′ (‖B‖) + f ′+ (0)

2

)

≤ f (A)A−2 − f (B)B−2 − f (0)
(
A−2 −B−2

)
− f ′+ (0)

(
A−1 −B−1

)
≤ 2 ‖B −A‖

∥∥A−1∥∥2
×

∥∥A−1∥∥ [f (∥∥A−1∥∥−1)− f (0)]− f ′
(∥∥A−1∥∥−1)+ f ′+ (0)

2

 .
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If f (0) = 0, then

0 ≤ 2

‖B‖2
∥∥∥(B −A)−1∥∥∥

(
f (‖B‖)
‖B‖

−
f ′ (‖B‖) + f ′+ (0)

2

)
(2.22)

≤ f (A)A−2 − f (B)B−2 − f ′+ (0)
(
A−1 −B−1

)
≤ 2 ‖B −A‖

∥∥A−1∥∥2
×

∥∥A−1∥∥ f (∥∥A−1∥∥−1)− f ′
(∥∥A−1∥∥−1)+ f ′+ (0)

2

 .

Remark 2. Consider the operator convex function f (t) = − ln (t+ 1),
t ≥ 0. Assume that A ≥ α > 0, δ ≥ B > 0 and 0 < m ≤ B−A ≤M for some
constants α, δ, m, M. Then by (2.21) we derive

0 ≤ 2m

δ2

(
δ + 2

2 (δ + 1)
− ln (δ + 1)

δ

)
≤ B−2 ln (B + 1)−A−2 ln (A+ 1) +A−1 −B−1

≤ 2M

α2

(
α+ 2

2 (α+ 1)
− ln (α+ 1)

α

)
.

If A, B > 0 and B −A > 0, then by (2.22)

0 ≤ 2

‖B‖2
∥∥∥(B −A)−1∥∥∥

(
‖B‖+ 2

2 (‖B‖+ 1)
− ln (‖B‖+ 1)

‖B‖

)

≤ B−2 ln (B + 1)−A−2 ln (A+ 1) +A−1 −B−1

≤ 2 ‖B −A‖
∥∥A−1∥∥2( 1 + 2

∥∥A−1∥∥
2 (‖A−1‖+ 1)

−
∥∥A−1∥∥ ln(∥∥A−1∥∥−1 + 1

))
.
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3. More Examples

Consider the kernel e−a (λ) := exp (−aλ), λ ≥ 0 and a > 0. Then

D(e−a) (t) :=
∫ ∞
0

exp (−aλ)
t+ λ

dλ = E1 (at) exp (at) , t ≥ 0,

where

E1 (t) :=

∫ ∞
t

e−u

u
du, t ≥ 0.

For a = 1 we have

D(e−1) (t) :=
∫ ∞
0

exp (−λ)
t+ λ

dλ = E1 (t) exp (t) , t ≥ 0.

Since E′1 (t) = −e−t

t , t > 0, then

D′(e−a) (t) = E′1 (at) exp (at) + E1 (at) (exp (at))
′
= aE1 (at) exp (at)−

1

t
.

Assume that A ≥ α > 0, δ ≥ B > 0 and 0 < m ≤ B − A ≤ M for some
constants α, δ, m, M. Then by (2.6) we get

0 ≤ m
[
1

δ
− aE1 (aδ) exp (aδ)

]
≤ E1 (aA) exp (aA)− E1 (aB) exp (aB)

≤M
[
1

α
− aE1 (aα) exp (aα)

]
,

for a > 1, and in particular

0 ≤ m
[
1

δ
− E1 (δ) exp (δ)

]
≤ E1 (A) exp (A)− E1 (B) exp (B)

≤M
[
1

α
− E1 (α) exp (α)

]
.



264 Silvestru Sever Dragomir

If A, B > 0 and B −A > 0, then by (2.16),

0 ≤
∥∥∥(B −A)−1∥∥∥−1 [‖B‖−1 − aE1 (a ‖B‖) exp (a ‖B‖)

]
≤ E1 (aA) exp (aA)− E1 (aB) exp (aB)

≤ ‖B −A‖
[∥∥A−1∥∥− aE1

(
a
∥∥A−1∥∥−1) exp(a ∥∥A−1∥∥−1)] ,

for a > 1, and in particular

0 ≤
∥∥∥(B −A)−1∥∥∥−1 [‖B‖−1 − E1 (‖B‖) exp (‖B‖)

]
≤ E1 (A) exp (A)− E1 (B) exp (B)

≤ ‖B −A‖
[∥∥A−1∥∥− E1

(∥∥A−1∥∥−1) exp(∥∥A−1∥∥−1)] .
More examples of such transforms are

D(w1/(`2+a2)) (t) :=

∫ ∞
0

1

(t+ λ) (λ2 + a2)
dλ =

πt− 2a ln(t/a)

2a (t2 + a2)
, t ≥ 0

and

D(w`/(`2+a2)) (t) :=

∫ ∞
0

λ

(t+ λ) (λ2 + a2)
dλ =

πa+ 2t ln(t/a)

2a (t2 + a2)
, t ≥ 0

for a > 0.
The interested reader may state other similar results by employing the

examples of monotone operator functions provided in [3], [4], [5], [8] and [9].
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