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GRADIENT INEQUALITIES
FOR AN INTEGRAL TRANSFORM OF
POSITIVE OPERATORS IN HILBERT SPACES

SILVESTRU SEVER DRAGOMIR

Abstract. For a continuous and positive function w (A), A > 0 and p a posi-
tive measure on (0, co) we consider the following integral transform

D) ()= [T w ) A+ T) du (),

where the integral is assumed to exist for T' a positive operator on a complex
Hilbert space H.
Assume that A > a >0, > B >0and 0 <m < B— A < M for some
constants a, §, m, M. Then
0 < —mD'(w, u) (8) < D(w, p) (A) — D(w, p) (B) < =MD (w, 1) (o) ,

where D’ (w, p) (t) is the derivative of D(w, ) (t) as a function of ¢ > 0.
If f: [0,00) — R is operator monotone on [0, c0) with f (0) = 0, then

0< SO ~7 (8] <F (M)A~ —f(B) B!
M !
< S @=r(@)a].

Some examples for operator convex functions as well as for integral transforms
D () related to the exponential and logarithmic functions are also provided.
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1. Introduction

Consider a complex Hilbert space (H, (-,-)). An operator T is said to be
positive (denoted by T' > 0) if (T'z, x) > 0 for all x € H and also an operator T
is said to be strictly positive (denoted by T' > 0) if T' is positive and invertible.
A real valued continuous function f on (0, c0) is said to be operator monotone
if f(A) > f(B) holds for any A > B > 0.

We have the following representation of operator monotone functions (|7],
[6]), see for instance [II, p. 144-145]:

THEOREM 1. A function f: [0,00) — R is operator monotone in [0, 00) if
and only if it has the representation

A
t) = f(0)+bt ——dp (A
FO=rO+u+ [ ),
where b > 0 and a positive measure pi on [0,00) such that
<A
1.1 ——dp (N) < oo.
(1.1) | i <=

A real valued continuous function f on an interval [ is said to be operator
convez (operator concave) on I if

(0C) FA=XN)A+AB) < (2)(1=A) f(A)+Af(B)

in the operator order, for all A € [0,1] and for every selfadjoint operator A
and B on a Hilbert space H whose spectra are contained in I. Notice that a
function f is operator concave if —f is operator convex.

We have the following representation of operator convex functions

([, p. 147]):

THEOREM 2. A function f: [0,00) — R is operator convex in [0, 00) with
J% (0) € R if and only if it has the representation

2

FO=FO+f O+ [T

dp(X)

where ¢ > 0 and a positive measure p on [0,00) such that (1.1)) holds.
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We have the following integral representation for the power function when
t >0, r € (0,1], see for instance [Il p. 145]

3 oo yr—1
-1 _ Sl (rm) / A D\

Observe that for t > 0, t # 1, we have

/“ d\ _ Int n 1 I u+t
o AN+ t—1 1-—t u+1

for all u > 0. By taking the limit over u — oo in this equality, we derive

Int _/°° d\
t—1 Jo A+t)(A+1)

which gives the representation for the logarithm

o0 A
lnt:(tl)/o O+ 1) (At 1)

for all t > 0.
Motivated by these representations, we introduce, for a continuous and
positive function w (\), A > 0, the following integral transform

(1.2) D (w, ) () := /OOO mdu (\), t>0,

where p is a positive measure on (0,00) and the integral (1.2)) exists for all
t > 0. For pu the Lebesgue usual measure, we put

w(A)

D (w) (t) = /OOO Todh >0

If we take p to be the usual Lebesgue measure and the kernel w, () =
AT~ r € (0,1], then

_ sin (rm)

(1.3) tr—t D (w,) (t), t>0.

For the same measure, if we take the kernel wi, (\) = (A+1)"", ¢t > 0, we
have the representation

(1.4) Int = (t —1)D (wy) (t), t> 0.
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Assume that 7' > 0, then by the continuous functional calculus for selfad-
joint operators, we can define the positive operator

Dw) ()= [ w0+ 1) dun ().

where w and u are as above. Also, when g is the usual Lebesgue measure,
then

p@g@p:AWwMMA+ﬂ*wx

for T' > 0.
From (1.3) we have the representation
_,  sin(rn)
T = D (w,) (T
YD () (1)

where T' > 0 and from (1.4))
(T—1)""InT =D (wy) (T)

provided 7" > 0 and 7" — 1 is invertible.
Assume that A > a >0, > B >0and 0 <m < B— A < M for some
constants «, &, m, M. In this paper we show among others that

0< 7mID/(w7 /1') (5) < D<w7 M) (A) - D(w7 M) (B) < 7M,D/(wv :u) (a) ’

where D' (w, p) (t) is the derivative of D(w, u1) (t) as a function of ¢ > 0. Some
examples for operator monotone and operator convex functions as well as for
integral transforms D (-, -) related to the exponential and logarithmic functions
are also provided.
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2. Main Results

Let f be an operator convex function on I. For A, B € SA; (H), the class
of all selfadjoint operators with spectra in I, we consider the auxiliary function
©a,p): [0,1] = B(H) defined by

o) ()= f((1-t)A+1tB).

For x € H we can also consider the auxiliary function ¢4 pys: 0,1] - R
defined by

P(A,B);x (t) = <90(A,B) (t) T, 'T> = <f ((1 - t) A+ tB) z, $> :
We have the following basic fact ([2]):

LEMMA 1. Let f be an operator convex function on I. For any A, B €
SAr (H), ¢ca,p) is well defined and conver in the operator order. For any
A,B € SA[ (H) and x € H the function (4 p),, 15 convex in the usual sense
on [0,1].

A continuous function g: SA; (H) — B(H) is said to be Gdteaux differ-
entiable in A € SA; (H) along the direction B € B(H) if the following limit
exists in the strong topology of B (H)

(2.1) Vga (B) = 151(1)9(A+SB;)_9(A) € B(H).

If the limit exists for all B € B(H), then we say that g is Gateauz
differentiable in A and we can write g € G (A) . If this is true for any A in an
open set S from SA; (H) we write that g € G (S).

If g is a continuous function on I, by utilizing the continuous functional
calculus the corresponding function of operators will be denoted in the same
way.

For two distinct operators A, B € SA; (H) we consider the segment of
selfadjoint operators

[A,B] = {(1—t) A+tB | te[0,1]}.

We observe that A, B € [A, B] and [4, B] C SA; (H).
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We also have (|2]):

LEMMA 2. Let f be an operator convez function on I and A, B € SA; (H),
with A # B. If f € G([A, B]), then the auxiliary function @4, py is differen-
tiable on (0,1) and

‘70/(A7B) (t) = vf(lft)A+tB (B - A) .
In particular,
¥ia,p) (0+) = Vfa (B - A)
and
<P/(A,B) (1-)=Vfp(B-A4).
and, see [2],

LEMMA 3. Let f be an operator convez function on I and A, B € SA; (H),
with A# B. If f € G([A, B]), then for 0 <t; <ty <1

Via-tyare,B (B—A) <Vfa_i)ate,B (B —A)

in the operator order.
In particular,

Via(B—A) <Vfa_t)ate,B(B—A)
and
Via-tyare,s(B—A) <Vfp(B—-A).
Also, we have
(2.2) Vfa(B—A) <Vfu-tatp(B—A)<Vfp(B-A)
for allt € (0,1).
We have the following gradient inequalities:

LEMMA 4. Let f be an operator convex function on I and A, B € SA; (H),
with A # B. If f € G([A, B)), then

(2.3) Vip(B—A)= f(B)=f(4) = Vfa(B-A).
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PRrROOF. By the properties of Bochner integral, we have
1
FB) = 1 (A) = iam (1) = 9am) 0) = [ ()
1
Z/ Via-tyaren (B — A)dt.
0
From we have, by integration, that
1
ViA(B - 4) < / Vfo—tapn (B~ A)dt < Vg (B - A),
0

and the inequality (2.3) is proved. O

Let T, S > 0. The function f (t) = t~! is operator Gateaux differentiable
and the Gateaux derivative is given by

[f(T+t5)—f(T)

(2.4) Vir (8) = lim =-T7's7!

t

for T, S > 0.
Using (2.4)) for the operator convex function f () =t=1, we get

-D'D-C)D'>D'-Cc'>-c'(D-C)Cc?
that is equivalent to
(2.5) D' D-C)p'<ct'-Dl'<ct'(D-0)C!
forall C, D > 0. If
m<D-C<M

for some constants m, M, then

mD?<D ' (D-C)D !
and

c'(b-c)yct<mCc?

and by (2.5) we derive

mD2<C '—D'<MC2
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Moreover, if C > a > 0 and D < §, then we get
C2<a?and D2> 5_2,

which implies that

E

s <CT' =D <

(=%
IS

We have the following lower and upper bounds for D(w, 1) (A)—D(w, ) (B)
which is a nonnegative operator in the general case when B — A > 0.

THEOREM 3. AssumethatA>a>0,0>B >0and0<m<B-A<M
for some constants o, 5, m, M. Then

(2.6) 0<-—mD'(w, ) (6) < D(w, ) (A) = D(w, p) (B) < —MD'(w, p) (a) ,
where D' (w, p) (t) is the derivative of D(w, ) (t) as a function of t > 0.

PROOF. We have
D(w, p) (A) = D(w, p) (B) = /OOO w () [(A + AT =B du ().
From we get for C' = XA+ A and D = A + B that
(2.7) A+B) ' B-AXN+B) <O+ AT -0+B)"
<SA+A) T B-AHN+A)T!

for all A > 0.
If we multiply (2.7) by w (A) > 0 and integrate over du (\) we get

(2.8) /Ooow(x) A+B) " (B—A) (A +B) tdu(N)
< D(w, p) (4) — Dlw, ) (B)
< [Cum0+ AT B- )0+ ),

Since m < B — A < M hence

mA+B) 2 <(A+B) ' (B-AW\+B)",
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which implies, by integration, that
(2.9) m/ w\) A+ B) 2 du(\)
0

< [CuW 0BT B 0B A,

Also
A+A) " B-AXN+A) T <MOA+A)?

which implies, by integration, that

(2.10) /Ooow()\) A+ A) " (B=A) A+ A du ()

SM/OOOw()\)(/\+A)_2du(>\).

Since B < 4, then A+ B < A+ for all A > 0 which implies that (A + B)_l >
(A+6)"" and therefore (A + B) > > (A +6) > Consequently

(2.11) m/ooow()\) A+ B) 2du(\) Zm/ooow()\) A +8)"2du ().

Also, since A > « > 0, then A+ A > A+« > 0, which implies that (A + A)_l
(A+ )", therefore A+ A)"> < (A +a) > and

IN

(2.12) M/OOo wN) A+ A)2du () < M/Ooo w(A) A+ o) 2du ().
From f we get

(2.13) m/ ) A+ 6) % du (3) < D(w, 1) (A) — D(uw, 1) (B)

<M/ A) A+ a) 2 du(N).
For h # 0 small,

mmmu+m—vwﬂww:ilm<lﬂﬂ _wQQde

h t+h+X t+A

w (N)
) (t+h+/\)(t+/\)d“m'
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By taking the limit over h — 0 and using the properties of limits and integrals,
we get the derivative of D(w, i) as

w ()
(t+\)?

(2.14) D' (w, 1) (£) = — /OOO du()) <0, t>0.

From (2.13)) and (2.14)) we derive (2.6)). O

We know that for T > 0, we have the operator inequalities
(2.15) o< |T7Y T <T < |IT).
Indeed, it is well known that, if P > 0, then
[(Pz,y)|* < (Pz,x) (Py,y)
for all x, y € H. Therefore, if T > 0, then

(z,3)° = <T_1Tx x>2 = <Ta:,T_1x>2
(Tz,z) (TT 'z, T ') = (Tz,z) (x, T ')

forallz € H. If z € H, ||z|| =1, then

1< (Tw,z) (x, T 'z) < (Tz,x) ”shl:pl (2, T 'z) = (Tx,z) HT_lH ,

which implies the following operator inequality
7 1 <
The second inequality in ([2.15)) is obvious.

COROLLARY 1. If A, B>0 and B— A > 0, then
-1
(216) 0<—|[(B= )| D(w,n) (1BI) < Plw, 1) (4) - D(w, ) (B)

<~ 1B = Al D (w,p) (477
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PROOF. Since 4> |AY|™' =a>0,6=||B| > B>0and
-1
O<m:”w—AYw <B-A<|B-A|=M,

then by (2.6) we get (2.16]). O

The case of operator monotone functions is as follows:

COROLLARY 2. Assume that A>a>0,6>B>0and0<m<B-A<
M for some constants c, 5, m, M. If f: [0,00) — R is operator monotone on
[0,00), then

(2.17) 0< 5 [£(0)=F(0) = f(5)3]
<SFM)AT —f(B) B~ [(0) (A7 =BT
< 231 (@) ~ F(O) ~ ' (@)a].

If f(0) =0, then

(2.18) 0< 5 [f(0)~F ()8 < F(A)A™ — F(B) B~
< 20 @) ~  (a)a].

PRrROOF. We have that

f(t)_f(o)—b:/ooAdu()\)ZD(f,M)(t% £>0
t 0

with £(\) = A, for some positive measure p (A) and nonnegative b. From this,

f ()t —f )+ f(0)

> . t>0.

D'(4,) (1) =

Then by we get
0< S1F6) ~F(0) = (9)3]
gV@@—f@ﬂA*—iﬂBwaﬂmﬂflSg&fw%aﬂm—f%®ah

which is equivalent to (2.17). O
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REMARK 1. If we write the inequality (2.18]) for the operator monotone
function f (t) =t", r € (0, 1], then we get the power inequalities

0<(1—7)8"2*m< A B~ 1< (1-7r)a"?M,
provided that A, B satisfy the assumptions in Corollary [2]
We also have the logarithmic inequalities

m

0< 5

@+~ @E+1)7"6] <A m(A+1) = B (B +1)

M 1
< — — .
=3 [ln (a+1)—(a+1) a}
We also have:

COROLLARY 3. Let A, B> 0 and B—A > 0. If f: [0,00) — R is operator
monotone on [0,00), then

0< ————r [F(IBI) — 7 0) =  (IB1) |BI]
1817 |8 - )7

<FA)AT —f(B)B = f(0) (A7 - B™)

) o 20

1112
< HB *AH HA 1” ||A*1||

If f(0) =0, then

(219) 0 [F(IBI) - £ (1B) B
1817 |[(B - )7

<fA)A - f(B)B

sy - L)

1112
< ”B _AH ||A 1“ ||A71H

If we take f (t) =t", r € (0,1] in (2.19)), then we get the power inequalities

(L-r) B[

0<
(CREN

<A BT < (1-1)|B-A||A”

1 2—r
(N

for A, B>0and B— A > 0.
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We also have the logarithmic inequalities

1
1B |B - a7

[ (1B] + 1) = (18] + 1)~ 1B

<A 'ln(A+1)-B'In(B+1)
< 15 = AP [ (a7 ) = ()

The case of operator convex functions is as follows:

COROLLARY 4. Assume that A, B are as in Corollary . If f: [0,00) = R
is operator convex on [0,00), then

2m (f(0)—f(0)  f'(6)+f}(0)
(2.20) 0< = < 5 - 5 + )

< f(A)A2— f(B)B™2~ f(0) (A"~ B?)
— £ (0) (AT =BT
_2M (f(a) —f(0) f’(a)+f’+<0)> _

- a? o 2

If (0) =0, then

2m (f(8)  f(0)+ fi(0)
(2.21) 0< ( + )

) 2
< f(A)A2 = [(B)B™ = [, (0) (A~ = B

S%ﬂf (fg;o _ f’(a);ﬁ(()))'

PRrROOF. We have that

f(t)—f((zg—f+(0)t_C:/Ooo/\’\ﬂdu( ) =D(l,p) (), >0

with ¢ (\) = A for some positive measure u (A) and nonnegative c.
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We have that

(f'(t) — £1 (0)) 12 — 2t (f (t) — f (0) — f4 (0) 1)
t4

2 (f’ )+ /0 f@) f(0)> _

D(L ) (t) =

2 2 B t

Since
D(L, 1) (4) — DL, 1) (B)
= [f(A) = f(0)—fL(0)A] A2 — [f(B) - f(0) - f; (0) B] B~?
=f(A)AZ —f(B)B?~f(0) (A -B7?) - fL.(0) (A7 = B™),

e ) = 2 ({210 S0+ 10)

62 1) 2
and
2M —f(0 ! ' (0
e = B (L0 S L0
hence by we derive . O

COROLLARY 5. Let A, B> 0 and B—A > 0. If f: [0,00) — R is operator
convezx on [0,00), then

2 FABIN = f0) Bl + £ (0)
b= 1817 |5 — )7 < Bl 5 )

<STA)A?—f(B)B? — f(0) (A =B7%) = [ (0) (A~ = B7Y)

<2|B - Al|[|A7Y

. (A1 () - s - L)+ 5 “”) |
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If f(0) =0, then

2 £ABly 1 ABID + £ (0)
222 OSHBHQH(BA)1H< I 5 )

< f(A)A2— f(B)B2 - f,(0)(A™' = B7Y)

<2|B - Al[a’

) (Ml () - (la) + (0))_

2

REMARK 2. Consider the operator convex function f(¢) = —In(t+1),
t>0. Assume that A>a>0,0>B>0and 0 <m < B— A < M for some
constants «, §, m, M. Then by (2.21) we derive

0<2ﬂ 6+2  In(d+1)
— 02 \2(0+1) J

<B?Im(B+1)-A2In(A+1)+A ' -B7!

2M (2 (aa—:_Zl) ~In (aa+ 1)) .

= a2
If A, B>0and B— A > 0, then by ([2.22)

2 1Bl +2  n(|B]+1)
S BR[| (st e )

<B?2m(B+1)-A2In(A+1)+ A"t - B!

B 142]A-1t 3 -
<25 - ] 4~ (Z(HA_’M—HA (4 1+1))-
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3. More Examples

Consider the kernel e_, (\) :=exp (—aA), A > 0 and a > 0. Then

Dle_q) (t) = /Ooo eXIZi__;L)\)d)\ = B (at)exp (at), t >0,

where

—Uu

e
B (t):=] “—du, t>0.
¢

u

For a = 1 we have

Dler) ()= [ EEN

=F > 0.
; Y d\ 1(t)exp(t), t>0

Since E1 (t) = —%, t >0, then

D'(e_q) (t) = E} (at) exp (at) + Ey (at) (exp (at))’ = aE; (at) exp (at) — %

Assume that A>a >0, > B >0and 0 <m < B— A < M for some
constants «, §, m, M. Then by (2.6) we get

0<m [(15 — 4By (a6) exp (aé)}

< E; (aA)exp (aA) — Eq (aB)exp (aB)

IN

M [; _ aF) () exp (aa)] ,

for @ > 1, and in particular

1

0<m [5 — B (8) exp (5)]

IN

IN

E; (A)exp (A) — E1 (B)exp (B)

IN

M [; By () exp (a)] .



264 Silvestru Sever Dragomir

If A, B>0and B— A >0, then by (2.16),

o< -7 1817 - aB @Bl exp (o B
< E; (aA)exp (aA) — Eq (aB)exp (aB)
< 1B Al |47 ~aBx (a7 ) exp (afla )]

for @ > 1, and in particular

o< -2 {1517 - B (B e (151

< Ey (A)exp (A) — Ey (B)exp (B)
<IB - Al - B (a7 ) exp (a7

More examples of such transforms are

o 1 7t — 2aln(t/a)
D 2pq2y) (1) 1= =y U2
(1/240%) (1) /0 eV P AT (e B
and
o0 A ma + 2tn(t/a)
D(we(p24a2)) (1) = =y t2
(wé/(é +a ))( ) /o (t+ ) (A2 + a?) 2a (t2 + a2) ’ =0
for a > 0.

The interested reader may state other similar results by employing the
examples of monotone operator functions provided in 3], [4], [5], [8] and [9].
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of the paper.
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