GRADIENT INEQUALITIES FOR AN INTEGRAL TRANSFORM OF POSITIVE OPERATORS IN HILBERT SPACES

Silvestru Sever Dragomir (id

Abstract. For a continuous and positive function $w(\lambda), \lambda>0$ and μ a positive measure on $(0, \infty)$ we consider the following integral transform

$$
\mathcal{D}(w, \mu)(T):=\int_{0}^{\infty} w(\lambda)(\lambda+T)^{-1} d \mu(\lambda)
$$

where the integral is assumed to exist for T a positive operator on a complex Hilbert space H.

Assume that $A \geq \alpha>0, \delta \geq B>0$ and $0<m \leq B-A \leq M$ for some constants α, δ, m, M. Then

$$
0 \leq-m \mathcal{D}^{\prime}(w, \mu)(\delta) \leq \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \leq-M \mathcal{D}^{\prime}(w, \mu)(\alpha)
$$

where $\mathcal{D}^{\prime}(w, \mu)(t)$ is the derivative of $\mathcal{D}(w, \mu)(t)$ as a function of $t>0$.
If $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone on $[0, \infty)$ with $f(0)=0$, then

$$
\begin{aligned}
0 & \leq \frac{m}{\delta^{2}}\left[f(\delta)-f^{\prime}(\delta) \delta\right] \leq f(A) A^{-1}-f(B) B^{-1} \\
& \leq \frac{M}{\alpha^{2}}\left[f(\alpha)-f^{\prime}(\alpha) \alpha\right]
\end{aligned}
$$

Some examples for operator convex functions as well as for integral transforms $\mathcal{D}(\cdot, \cdot)$ related to the exponential and logarithmic functions are also provided.

[^0]
1. Introduction

Consider a complex Hilbert space $(H,\langle\cdot, \cdot\rangle)$. An operator T is said to be positive (denoted by $T \geq 0$) if $\langle T x, x\rangle \geq 0$ for all $x \in H$ and also an operator T is said to be strictly positive (denoted by $T>0$) if T is positive and invertible. A real valued continuous function f on $(0, \infty)$ is said to be operator monotone if $f(A) \geq f(B)$ holds for any $A \geq B>0$.

We have the following representation of operator monotone functions ([7], [6]), see for instance [1] p. 144-145]:

Theorem 1. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone in $[0, \infty)$ if and only if it has the representation

$$
f(t)=f(0)+b t+\int_{0}^{\infty} \frac{t \lambda}{t+\lambda} d \mu(\lambda)
$$

where $b \geq 0$ and a positive measure μ on $[0, \infty)$ such that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\lambda}{1+\lambda} d \mu(\lambda)<\infty . \tag{1.1}
\end{equation*}
$$

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if

$$
\begin{equation*}
f((1-\lambda) A+\lambda B) \leq(\geq)(1-\lambda) f(A)+\lambda f(B) \tag{OC}
\end{equation*}
$$

in the operator order, for all $\lambda \in[0,1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if $-f$ is operator convex.

We have the following representation of operator convex functions ([1, p. 147]):

Theorem 2. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is operator convex in $[0, \infty)$ with $f_{+}^{\prime}(0) \in \mathbb{R}$ if and only if it has the representation

$$
f(t)=f(0)+f_{+}^{\prime}(0) t+c t^{2}+\int_{0}^{\infty} \frac{t^{2} \lambda}{t+\lambda} d \mu(\lambda)
$$

where $c \geq 0$ and a positive measure μ on $[0, \infty)$ such that (1.1] holds.

We have the following integral representation for the power function when $t>0, r \in(0,1]$, see for instance [1, p. 145]

$$
t^{r-1}=\frac{\sin (r \pi)}{\pi} \int_{0}^{\infty} \frac{\lambda^{r-1}}{\lambda+t} d \lambda
$$

Observe that for $t>0, t \neq 1$, we have

$$
\int_{0}^{u} \frac{d \lambda}{(\lambda+t)(\lambda+1)}=\frac{\ln t}{t-1}+\frac{1}{1-t} \ln \left(\frac{u+t}{u+1}\right)
$$

for all $u>0$. By taking the limit over $u \rightarrow \infty$ in this equality, we derive

$$
\frac{\ln t}{t-1}=\int_{0}^{\infty} \frac{d \lambda}{(\lambda+t)(\lambda+1)}
$$

which gives the representation for the logarithm

$$
\ln t=(t-1) \int_{0}^{\infty} \frac{d \lambda}{(\lambda+1)(\lambda+t)}
$$

for all $t>0$.
Motivated by these representations, we introduce, for a continuous and positive function $w(\lambda), \lambda>0$, the following integral transform

$$
\begin{equation*}
\mathcal{D}(w, \mu)(t):=\int_{0}^{\infty} \frac{w(\lambda)}{\lambda+t} d \mu(\lambda), \quad t>0 \tag{1.2}
\end{equation*}
$$

where μ is a positive measure on $(0, \infty)$ and the integral 1.2 exists for all $t>0$. For μ the Lebesgue usual measure, we put

$$
\mathcal{D}(w)(t):=\int_{0}^{\infty} \frac{w(\lambda)}{\lambda+t} d \lambda, \quad t>0
$$

If we take μ to be the usual Lebesgue measure and the kernel $w_{r}(\lambda)=$ $\lambda^{r-1}, r \in(0,1]$, then

$$
\begin{equation*}
t^{r-1}=\frac{\sin (r \pi)}{\pi} \mathcal{D}\left(w_{r}\right)(t), \quad t>0 \tag{1.3}
\end{equation*}
$$

For the same measure, if we take the kernel $w_{\ln }(\lambda)=(\lambda+1)^{-1}, t>0$, we have the representation

$$
\begin{equation*}
\ln t=(t-1) \mathcal{D}\left(w_{\ln }\right)(t), \quad t>0 \tag{1.4}
\end{equation*}
$$

Assume that $T>0$, then by the continuous functional calculus for selfadjoint operators, we can define the positive operator

$$
\mathcal{D}(w, \mu)(T):=\int_{0}^{\infty} w(\lambda)(\lambda+T)^{-1} d \mu(\lambda)
$$

where w and μ are as above. Also, when μ is the usual Lebesgue measure, then

$$
\mathcal{D}(w)(T):=\int_{0}^{\infty} w(\lambda)(\lambda+T)^{-1} d \lambda
$$

for $T>0$.
From (1.3) we have the representation

$$
T^{r-1}=\frac{\sin (r \pi)}{\pi} \mathcal{D}\left(w_{r}\right)(T)
$$

where $T>0$ and from 1.4

$$
(T-1)^{-1} \ln T=\mathcal{D}\left(w_{\ln }\right)(T)
$$

provided $T>0$ and $T-1$ is invertible.
Assume that $A \geq \alpha>0, \delta \geq B>0$ and $0<m \leq B-A \leq M$ for some constants α, δ, m, M. In this paper we show among others that

$$
0 \leq-m \mathcal{D}^{\prime}(w, \mu)(\delta) \leq \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \leq-M \mathcal{D}^{\prime}(w, \mu)(\alpha)
$$

where $\mathcal{D}^{\prime}(w, \mu)(t)$ is the derivative of $\mathcal{D}(w, \mu)(t)$ as a function of $t>0$. Some examples for operator monotone and operator convex functions as well as for integral transforms $\mathcal{D}(\cdot, \cdot)$ related to the exponential and logarithmic functions are also provided.

2. Main Results

Let f be an operator convex function on I. For $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$, the class of all selfadjoint operators with spectra in I, we consider the auxiliary function $\varphi_{(A, B)}:[0,1] \rightarrow \mathcal{B}(H)$ defined by

$$
\varphi_{(A, B)}(t):=f((1-t) A+t B)
$$

For $x \in H$ we can also consider the auxiliary function $\varphi_{(A, B) ; x}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
\varphi_{(A, B) ; x}(t):=\left\langle\varphi_{(A, B)}(t) x, x\right\rangle=\langle f((1-t) A+t B) x, x\rangle .
$$

We have the following basic fact ([2]):

Lemma 1. Let f be an operator convex function on I. For any $A, B \in$ $\mathcal{S} \mathcal{A}_{I}(H), \varphi_{(A, B)}$ is well defined and convex in the operator order. For any $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$ and $x \in H$ the function $\varphi_{(A, B) ; x}$ is convex in the usual sense on $[0,1]$.

A continuous function $g: \mathcal{S A}_{I}(H) \rightarrow \mathcal{B}(H)$ is said to be Gâteaux differentiable in $A \in \mathcal{S} \mathcal{A}_{I}(H)$ along the direction $B \in \mathcal{B}(H)$ if the following limit exists in the strong topology of $\mathcal{B}(H)$

$$
\begin{equation*}
\nabla g_{A}(B):=\lim _{s \rightarrow 0} \frac{g(A+s B)-g(A)}{s} \in \mathcal{B}(H) \tag{2.1}
\end{equation*}
$$

If the limit (2.1) exists for all $B \in \mathcal{B}(H)$, then we say that g is Gateaux differentiable in A and we can write $g \in \mathcal{G}(A)$. If this is true for any A in an open set \mathcal{S} from $\mathcal{S} \mathcal{A}_{I}(H)$ we write that $g \in \mathcal{G}(\mathcal{S})$.

If g is a continuous function on I, by utilizing the continuous functional calculus the corresponding function of operators will be denoted in the same way.

For two distinct operators $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$ we consider the segment of selfadjoint operators

$$
[A, B]:=\{(1-t) A+t B \mid t \in[0,1]\}
$$

We observe that $A, B \in[A, B]$ and $[A, B] \subset \mathcal{S} \mathcal{A}_{I}(H)$.

We also have ([2]):
Lemma 2. Let f be an operator convex function on I and $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then the auxiliary function $\varphi_{(A, B)}$ is differentiable on $(0,1)$ and

$$
\varphi_{(A, B)}^{\prime}(t)=\nabla f_{(1-t) A+t B}(B-A)
$$

In particular,

$$
\varphi_{(A, B)}^{\prime}(0+)=\nabla f_{A}(B-A)
$$

and

$$
\varphi_{(A, B)}^{\prime}(1-)=\nabla f_{B}(B-A)
$$

and, see [2],
Lemma 3. Let f be an operator convex function on I and $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then for $0<t_{1}<t_{2}<1$

$$
\nabla f_{\left(1-t_{1}\right) A+t_{1} B}(B-A) \leq \nabla f_{\left(1-t_{2}\right) A+t_{2} B}(B-A)
$$

in the operator order.
In particular,

$$
\nabla f_{A}(B-A) \leq \nabla f_{\left(1-t_{1}\right) A+t_{1} B}(B-A)
$$

and

$$
\nabla f_{\left(1-t_{2}\right) A+t_{2} B}(B-A) \leq \nabla f_{B}(B-A)
$$

Also, we have

$$
\begin{equation*}
\nabla f_{A}(B-A) \leq \nabla f_{(1-t) A+t B}(B-A) \leq \nabla f_{B}(B-A) \tag{2.2}
\end{equation*}
$$

for all $t \in(0,1)$.
We have the following gradient inequalities:
Lemma 4. Let f be an operator convex function on I and $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$, with $A \neq B$. If $f \in \mathcal{G}([A, B])$, then

$$
\begin{equation*}
\nabla f_{B}(B-A) \geq f(B)-f(A) \geq \nabla f_{A}(B-A) \tag{2.3}
\end{equation*}
$$

Proof. By the properties of Bochner integral, we have

$$
\begin{aligned}
f(B)-f(A) & =\varphi_{(A, B)}(1)-\varphi_{(A, B)}(0)=\int_{0}^{1} \varphi_{(A, B)}^{\prime}(t) d t \\
& =\int_{0}^{1} \nabla f_{(1-t) A+t B}(B-A) d t
\end{aligned}
$$

From (2.2) we have, by integration, that

$$
\nabla f_{A}(B-A) \leq \int_{0}^{1} \nabla f_{(1-t) A+t B}(B-A) d t \leq \nabla f_{B}(B-A)
$$

and the inequality 2.3 is proved.
Let $T, S>0$. The function $f(t)=t^{-1}$ is operator Gâteaux differentiable and the Gâteaux derivative is given by

$$
\begin{equation*}
\nabla f_{T}(S):=\lim _{t \rightarrow 0}\left[\frac{f(T+t S)-f(T)}{t}\right]=-T^{-1} S T^{-1} \tag{2.4}
\end{equation*}
$$

for $T, S>0$.
Using (2.4) for the operator convex function $f(t)=t^{-1}$, we get

$$
-D^{-1}(D-C) D^{-1} \geq D^{-1}-C^{-1} \geq-C^{-1}(D-C) C^{-1}
$$

that is equivalent to

$$
\begin{equation*}
D^{-1}(D-C) D^{-1} \leq C^{-1}-D^{-1} \leq C^{-1}(D-C) C^{-1} \tag{2.5}
\end{equation*}
$$

for all $C, D>0$. If

$$
m \leq D-C \leq M
$$

for some constants m, M, then

$$
m D^{-2} \leq D^{-1}(D-C) D^{-1}
$$

and

$$
C^{-1}(D-C) C^{-1} \leq M C^{-2}
$$

and by 2.5 we derive

$$
m D^{-2} \leq C^{-1}-D^{-1} \leq M C^{-2}
$$

Moreover, if $C \geq \alpha>0$ and $D \leq \delta$, then we get

$$
C^{-2} \leq \alpha^{-2} \text { and } D^{-2} \geq \delta^{-2}
$$

which implies that

$$
\frac{m}{\delta^{2}} \leq C^{-1}-D^{-1} \leq \frac{M}{\alpha^{2}}
$$

We have the following lower and upper bounds for $\mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B)$ which is a nonnegative operator in the general case when $B-A \geq 0$.

Theorem 3. Assume that $A \geq \alpha>0, \delta \geq B>0$ and $0<m \leq B-A \leq M$ for some constants α, δ, m, M. Then
(2.6) $0 \leq-m \mathcal{D}^{\prime}(w, \mu)(\delta) \leq \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \leq-M \mathcal{D}^{\prime}(w, \mu)(\alpha)$, where $\mathcal{D}^{\prime}(w, \mu)(t)$ is the derivative of $\mathcal{D}(w, \mu)(t)$ as a function of $t>0$.

Proof. We have

$$
\mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B)=\int_{0}^{\infty} w(\lambda)\left[(\lambda+A)^{-1}-(\lambda+B)^{-1}\right] d \mu(\lambda)
$$

From 2.5 we get for $C=\lambda+A$ and $D=\lambda+B$ that

$$
\begin{align*}
(\lambda+B)^{-1}(B-A)(\lambda+B)^{-1} & \leq(\lambda+A)^{-1}-(\lambda+B)^{-1} \tag{2.7}\\
& \leq(\lambda+A)^{-1}(B-A)(\lambda+A)^{-1}
\end{align*}
$$

for all $\lambda \geq 0$.
If we multiply 2.7 by $w(\lambda) \geq 0$ and integrate over $d \mu(\lambda)$ we get

$$
\begin{align*}
& \int_{0}^{\infty} w(\lambda)(\lambda+B)^{-1}(B-A)(\lambda+B)^{-1} d \mu(\lambda) \tag{2.8}\\
& \leq \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \\
& \leq \int_{0}^{\infty} w(\lambda)(\lambda+A)^{-1}(B-A)(\lambda+A)^{-1} d \mu(\lambda)
\end{align*}
$$

Since $m \leq B-A \leq M$ hence

$$
m(\lambda+B)^{-2} \leq(\lambda+B)^{-1}(B-A)(\lambda+B)^{-1}
$$

which implies, by integration, that

$$
\begin{align*}
& m \int_{0}^{\infty} w(\lambda)(\lambda+B)^{-2} d \mu(\lambda) \tag{2.9}\\
& \leq \int_{0}^{\infty} w(\lambda)(\lambda+B)^{-1}(B-A)(\lambda+B)^{-1} d \mu(\lambda)
\end{align*}
$$

Also

$$
(\lambda+A)^{-1}(B-A)(\lambda+A)^{-1} \leq M(\lambda+A)^{-2}
$$

which implies, by integration, that

$$
\begin{align*}
& \int_{0}^{\infty} w(\lambda)(\lambda+A)^{-1}(B-A)(\lambda+A)^{-1} d \mu(\lambda) \tag{2.10}\\
& \leq M \int_{0}^{\infty} w(\lambda)(\lambda+A)^{-2} d \mu(\lambda)
\end{align*}
$$

Since $B \leq \delta$, then $\lambda+B \leq \lambda+\delta$ for all $\lambda \geq 0$ which implies that $(\lambda+B)^{-1} \geq$ $(\lambda+\delta)^{-\overline{1}}$ and therefore $(\lambda+B)^{-2} \geq(\lambda+\delta)^{-2}$. Consequently

$$
\begin{equation*}
m \int_{0}^{\infty} w(\lambda)(\lambda+B)^{-2} d \mu(\lambda) \geq m \int_{0}^{\infty} w(\lambda)(\lambda+\delta)^{-2} d \mu(\lambda) \tag{2.11}
\end{equation*}
$$

Also, since $A \geq \alpha>0$, then $\lambda+A \geq \lambda+\alpha>0$, which implies that $(\lambda+A)^{-1} \leq$ $(\lambda+\alpha)^{-1}$, therefore $(\lambda+A)^{-2} \leq(\lambda+\alpha)^{-2}$ and

$$
\begin{equation*}
M \int_{0}^{\infty} w(\lambda)(\lambda+A)^{-2} d \mu(\lambda) \leq M \int_{0}^{\infty} w(\lambda)(\lambda+\alpha)^{-2} d \mu(\lambda) \tag{2.12}
\end{equation*}
$$

From (2.8- 2.12 we get

$$
\begin{align*}
m \int_{0}^{\infty} w(\lambda)(\lambda+\delta)^{-2} d \mu(\lambda) & \leq \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \tag{2.13}\\
& \leq M \int_{0}^{\infty} w(\lambda)(\lambda+\alpha)^{-2} d \mu(\lambda)
\end{align*}
$$

For $h \neq 0$ small,

$$
\begin{aligned}
\frac{\mathcal{D}(w, \mu)(t+h)-\mathcal{D}(w, \mu)(t)}{h} & =\frac{1}{h} \int_{0}^{\infty}\left(\frac{w(\lambda)}{t+h+\lambda}-\frac{w(\lambda)}{t+\lambda}\right) d \mu(\lambda) \\
& =-\int_{0}^{\infty} \frac{w(\lambda)}{(t+h+\lambda)(t+\lambda)} d \mu(\lambda)
\end{aligned}
$$

By taking the limit over $h \rightarrow 0$ and using the properties of limits and integrals, we get the derivative of $\mathcal{D}(w, \mu)$ as

$$
\begin{equation*}
\mathcal{D}^{\prime}(w, \mu)(t)=-\int_{0}^{\infty} \frac{w(\lambda)}{(t+\lambda)^{2}} d \mu(\lambda) \leq 0, \quad t>0 \tag{2.14}
\end{equation*}
$$

From 2.13 and 2.14 we derive 2.6 .
We know that for $T>0$, we have the operator inequalities

$$
\begin{equation*}
0<\left\|T^{-1}\right\|^{-1} \leq T \leq\|T\| \tag{2.15}
\end{equation*}
$$

Indeed, it is well known that, if $P \geq 0$, then

$$
|\langle P x, y\rangle|^{2} \leq\langle P x, x\rangle\langle P y, y\rangle
$$

for all $x, y \in H$. Therefore, if $T>0$, then

$$
\begin{aligned}
0 & \leq\langle x, x\rangle^{2}=\left\langle T^{-1} T x, x\right\rangle^{2}=\left\langle T x, T^{-1} x\right\rangle^{2} \\
& \leq\langle T x, x\rangle\left\langle T T^{-1} x, T^{-1} x\right\rangle=\langle T x, x\rangle\left\langle x, T^{-1} x\right\rangle
\end{aligned}
$$

for all $x \in H$. If $x \in H,\|x\|=1$, then

$$
1 \leq\langle T x, x\rangle\left\langle x, T^{-1} x\right\rangle \leq\langle T x, x\rangle \sup _{\|x\|=1}\left\langle x, T^{-1} x\right\rangle=\langle T x, x\rangle\left\|T^{-1}\right\|
$$

which implies the following operator inequality

$$
\left\|T^{-1}\right\|^{-1} 1_{H} \leq T
$$

The second inequality in 2.15 is obvious.
Corollary 1. If $A, B>0$ and $B-A>0$, then
(2.16) $\quad 0 \leq-\left\|(B-A)^{-1}\right\|^{-1} \mathcal{D}^{\prime}(w, \mu)(\|B\|) \leq \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B)$

$$
\leq-\|B-A\| \mathcal{D}^{\prime}(w, \mu)\left(\left\|A^{-1}\right\|^{-1}\right)
$$

Proof. Since $A \geq\left\|A^{-1}\right\|^{-1}=\alpha>0, \delta=\|B\| \geq B>0$ and

$$
0<m=\left\|(B-A)^{-1}\right\|^{-1} \leq B-A \leq\|B-A\|=M
$$

then by 2.6 we get 2.16 .
The case of operator monotone functions is as follows:

Corollary 2. Assume that $A \geq \alpha>0, \delta \geq B>0$ and $0<m \leq B-A \leq$ M for some constants α, δ, m, M. If $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone on $[0, \infty)$, then

$$
\begin{align*}
0 & \leq \frac{m}{\delta^{2}}\left[f(\delta)-f(0)-f^{\prime}(\delta) \delta\right] \tag{2.17}\\
& \leq f(A) A^{-1}-f(B) B^{-1}-f(0)\left(A^{-1}-B^{-1}\right) \\
& \leq \frac{M}{\alpha^{2}}\left[f(\alpha)-f(0)-f^{\prime}(\alpha) \alpha\right]
\end{align*}
$$

If $f(0)=0$, then

$$
\begin{align*}
0 & \leq \frac{m}{\delta^{2}}\left[f(\delta)-f^{\prime}(\delta) \delta\right] \leq f(A) A^{-1}-f(B) B^{-1} \tag{2.18}\\
& \leq \frac{M}{\alpha^{2}}\left[f(\alpha)-f^{\prime}(\alpha) \alpha\right]
\end{align*}
$$

Proof. We have that

$$
\frac{f(t)-f(0)}{t}-b=\int_{0}^{\infty} \frac{\lambda}{\lambda+t} d \mu(\lambda)=\mathcal{D}(\ell, \mu)(t), \quad t>0
$$

with $\ell(\lambda)=\lambda$, for some positive measure $\mu(\lambda)$ and nonnegative b. From this,

$$
\mathcal{D}^{\prime}(\ell, \mu)(t)=\frac{f^{\prime}(t) t-f(t)+f(0)}{t^{2}}, \quad t>0
$$

Then by (2.6) we get

$$
\begin{aligned}
0 & \leq \frac{m}{\delta^{2}}\left[f(\delta)-f(0)-f^{\prime}(\delta) \delta\right] \\
& \leq[f(A)-f(0)] A^{-1}-[f(B)-f(0)] B^{-1} \leq \frac{M}{\alpha^{2}}\left[f(\alpha)-f(0)-f^{\prime}(\alpha) \alpha\right]
\end{aligned}
$$

which is equivalent to (2.17).

REMARK 1. If we write the inequality 2.18 for the operator monotone function $f(t)=t^{r}, r \in(0,1]$, then we get the power inequalities

$$
0<(1-r) \delta^{r-2} m \leq A^{r-1}-B^{r-1} \leq(1-r) \alpha^{r-2} M
$$

provided that A, B satisfy the assumptions in Corollary 2 .
We also have the logarithmic inequalities

$$
\begin{aligned}
0 & \leq \frac{m}{\delta^{2}}\left[\ln (\delta+1)-(\delta+1)^{-1} \delta\right] \leq A^{-1} \ln (A+1)-B^{-1} \ln (B+1) \\
& \leq \frac{M}{\alpha^{2}}\left[\ln (\alpha+1)-(\alpha+1)^{-1} \alpha\right]
\end{aligned}
$$

We also have:
Corollary 3. Let $A, B>0$ and $B-A>0$. If $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone on $[0, \infty)$, then

$$
\begin{aligned}
0 & \leq \frac{1}{\|B\|^{2}\left\|(B-A)^{-1}\right\|}\left[f(\|B\|)-f(0)-f^{\prime}(\|B\|)\|B\|\right] \\
& \leq f(A) A^{-1}-f(B) B^{-1}-f(0)\left(A^{-1}-B^{-1}\right) \\
& \leq\|B-A\|\left\|A^{-1}\right\|^{2}\left[f\left(\left\|A^{-1}\right\|^{-1}\right)-f(0)-\frac{f^{\prime}\left(\left\|A^{-1}\right\|^{-1}\right)}{\left\|A^{-1}\right\|}\right]
\end{aligned}
$$

If $f(0)=0$, then

$$
\begin{align*}
0 & \leq \frac{1}{\|B\|^{2}\left\|(B-A)^{-1}\right\|}\left[f(\|B\|)-f^{\prime}(\|B\|)\|B\|\right] \tag{2.19}\\
& \leq f(A) A^{-1}-f(B) B^{-1} \\
& \leq\|B-A\|\left\|A^{-1}\right\|^{2}\left[f\left(\left\|A^{-1}\right\|^{-1}\right)-\frac{f^{\prime}\left(\left\|A^{-1}\right\|^{-1}\right)}{\left\|A^{-1}\right\|}\right]
\end{align*}
$$

If we take $f(t)=t^{r}, r \in(0,1]$ in 2.19$)$, then we get the power inequalities

$$
0<\frac{(1-r)\|B\|^{r-2}}{\left\|(B-A)^{-1}\right\|} \leq A^{r-1}-B^{r-1} \leq(1-r)\|B-A\|\left\|A^{-1}\right\|^{2-r}
$$

for $A, B>0$ and $B-A>0$.

We also have the logarithmic inequalities

$$
\begin{aligned}
0 & \leq \frac{1}{\|B\|^{2}\left\|(B-A)^{-1}\right\|}\left[\ln (\|B\|+1)-(\|B\|+1)^{-1}\|B\|\right] \\
& \leq A^{-1} \ln (A+1)-B^{-1} \ln (B+1) \\
& \leq\|B-A\|\left\|A^{-1}\right\|^{2}\left[\ln \left(\left\|A^{-1}\right\|^{-1}+1\right)-\left(\left\|A^{-1}\right\|^{-1}+1\right)^{-1}\left\|A^{-1}\right\|^{-1}\right]
\end{aligned}
$$

The case of operator convex functions is as follows:
Corollary 4. Assume that A, B are as in Corollary 2. If $f:[0, \infty) \rightarrow \mathbb{R}$ is operator convex on $[0, \infty)$, then

$$
\begin{align*}
0 \leq & \frac{2 m}{\delta^{2}}\left(\frac{f(\delta)-f(0)}{\delta}-\frac{f^{\prime}(\delta)+f_{+}^{\prime}(0)}{2}\right) \tag{2.20}\\
\leq & f(A) A^{-2}-f(B) B^{-2}-f(0)\left(A^{-2}-B^{-2}\right) \\
& -f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right) \\
\leq & \frac{2 M}{\alpha^{2}}\left(\frac{f(\alpha)-f(0)}{\alpha}-\frac{f^{\prime}(\alpha)+f_{+}^{\prime}(0)}{2}\right)
\end{align*}
$$

If $f(0)=0$, then

$$
\begin{align*}
0 & \leq \frac{2 m}{\delta^{2}}\left(\frac{f(\delta)}{\delta}-\frac{f^{\prime}(\delta)+f_{+}^{\prime}(0)}{2}\right) \tag{2.21}\\
& \leq f(A) A^{-2}-f(B) B^{-2}-f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right) \\
& \leq \frac{2 M}{\alpha^{2}}\left(\frac{f(\alpha)}{\alpha}-\frac{f^{\prime}(\alpha)+f_{+}^{\prime}(0)}{2}\right)
\end{align*}
$$

Proof. We have that

$$
\frac{f(t)-f(0)-f_{+}^{\prime}(0) t}{t^{2}}-c=\int_{0}^{\infty} \frac{\lambda}{\lambda+t} d \mu(\lambda)=\mathcal{D}(\ell, \mu)(t), \quad t \geq 0
$$

with $\ell(\lambda)=\lambda$ for some positive measure $\mu(\lambda)$ and nonnegative c.

We have that

$$
\begin{aligned}
\mathcal{D}^{\prime}(\ell, \mu)(t) & =\frac{\left(f^{\prime}(t)-f_{+}^{\prime}(0)\right) t^{2}-2 t\left(f(t)-f(0)-f_{+}^{\prime}(0) t\right)}{t^{4}} \\
& =\frac{2}{t^{2}}\left(\frac{f^{\prime}(t)+f_{+}^{\prime}(0)}{2}-\frac{f(t)-f(0)}{t}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
& \mathcal{D}(\ell, \mu)(A)-\mathcal{D}(\ell, \mu)(B) \\
& =\left[f(A)-f(0)-f_{+}^{\prime}(0) A\right] A^{-2}-\left[f(B)-f(0)-f_{+}^{\prime}(0) B\right] B^{-2} \\
& =f(A) A^{-2}-f(B) B^{-2}-f(0)\left(A^{-2}-B^{-2}\right)-f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right) \\
& \quad-m \mathcal{D}^{\prime}(\ell, \mu)(\delta)=\frac{2 m}{\delta^{2}}\left(\frac{f(\delta)-f(0)}{\delta}-\frac{f^{\prime}(\delta)+f_{+}^{\prime}(0)}{2}\right)
\end{aligned}
$$

and

$$
-M \mathcal{D}^{\prime}(\ell, \mu)(\alpha)=\frac{2 M}{\alpha^{2}}\left(\frac{f(\alpha)-f(0)}{\alpha}-\frac{f^{\prime}(\alpha)+f_{+}^{\prime}(0)}{2}\right)
$$

hence by (2.6) we derive 2.20 .
Corollary 5. Let $A, B>0$ and $B-A>0$. If $f:[0, \infty) \rightarrow \mathbb{R}$ is operator convex on $[0, \infty)$, then

$$
\begin{aligned}
0 \leq & \frac{2}{\|B\|^{2}\left\|(B-A)^{-1}\right\|}\left(\frac{f(\|B\|)-f(0)}{\|B\|}-\frac{f^{\prime}(\|B\|)+f_{+}^{\prime}(0)}{2}\right) \\
\leq & f(A) A^{-2}-f(B) B^{-2}-f(0)\left(A^{-2}-B^{-2}\right)-f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right) \\
\leq & 2\|B-A\|\left\|A^{-1}\right\|^{2} \\
& \times\left(\left\|A^{-1}\right\|\left[f\left(\left\|A^{-1}\right\|^{-1}\right)-f(0)\right]-\frac{f^{\prime}\left(\left\|A^{-1}\right\|^{-1}\right)+f_{+}^{\prime}(0)}{2}\right)
\end{aligned}
$$

If $f(0)=0$, then

$$
\begin{align*}
0 \leq & \frac{2}{\|B\|^{2}\left\|(B-A)^{-1}\right\|}\left(\frac{f(\|B\|)}{\|B\|}-\frac{f^{\prime}(\|B\|)+f_{+}^{\prime}(0)}{2}\right) \tag{2.22}\\
\leq & f(A) A^{-2}-f(B) B^{-2}-f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right) \\
\leq & 2\|B-A\|\left\|A^{-1}\right\|^{2} \\
& \times\left(\left\|A^{-1}\right\| f\left(\left\|A^{-1}\right\|^{-1}\right)-\frac{f^{\prime}\left(\left\|A^{-1}\right\|^{-1}\right)+f_{+}^{\prime}(0)}{2}\right)
\end{align*}
$$

Remark 2. Consider the operator convex function $f(t)=-\ln (t+1)$, $t \geq 0$. Assume that $A \geq \alpha>0, \delta \geq B>0$ and $0<m \leq B-A \leq M$ for some constants α, δ, m, M. Then by 2.21 we derive

$$
\begin{aligned}
0 & \leq \frac{2 m}{\delta^{2}}\left(\frac{\delta+2}{2(\delta+1)}-\frac{\ln (\delta+1)}{\delta}\right) \\
& \leq B^{-2} \ln (B+1)-A^{-2} \ln (A+1)+A^{-1}-B^{-1} \\
& \leq \frac{2 M}{\alpha^{2}}\left(\frac{\alpha+2}{2(\alpha+1)}-\frac{\ln (\alpha+1)}{\alpha}\right)
\end{aligned}
$$

If $A, B>0$ and $B-A>0$, then by 2.22)

$$
\begin{aligned}
0 & \leq \frac{2}{\|B\|^{2}\left\|(B-A)^{-1}\right\|}\left(\frac{\|B\|+2}{2(\|B\|+1)}-\frac{\ln (\|B\|+1)}{\|B\|}\right) \\
& \leq B^{-2} \ln (B+1)-A^{-2} \ln (A+1)+A^{-1}-B^{-1} \\
& \leq 2\|B-A\|\left\|A^{-1}\right\|^{2}\left(\frac{1+2\left\|A^{-1}\right\|}{2\left(\left\|A^{-1}\right\|+1\right)}-\left\|A^{-1}\right\| \ln \left(\left\|A^{-1}\right\|^{-1}+1\right)\right)
\end{aligned}
$$

3. More Examples

Consider the kernel $e_{-a}(\lambda):=\exp (-a \lambda), \lambda \geq 0$ and $a>0$. Then

$$
\mathcal{D}\left(e_{-a}\right)(t):=\int_{0}^{\infty} \frac{\exp (-a \lambda)}{t+\lambda} d \lambda=E_{1}(a t) \exp (a t), \quad t \geq 0
$$

where

$$
E_{1}(t):=\int_{t}^{\infty} \frac{e^{-u}}{u} d u, \quad t \geq 0
$$

For $a=1$ we have

$$
\mathcal{D}\left(e_{-1}\right)(t):=\int_{0}^{\infty} \frac{\exp (-\lambda)}{t+\lambda} d \lambda=E_{1}(t) \exp (t), \quad t \geq 0
$$

Since $E_{1}^{\prime}(t)=-\frac{e^{-t}}{t}, t>0$, then

$$
\mathcal{D}^{\prime}\left(e_{-a}\right)(t)=E_{1}^{\prime}(a t) \exp (a t)+E_{1}(a t)(\exp (a t))^{\prime}=a E_{1}(a t) \exp (a t)-\frac{1}{t}
$$

Assume that $A \geq \alpha>0, \delta \geq B>0$ and $0<m \leq B-A \leq M$ for some constants α, δ, m, M. Then by (2.6) we get

$$
\begin{aligned}
0 & \leq m\left[\frac{1}{\delta}-a E_{1}(a \delta) \exp (a \delta)\right] \\
& \leq E_{1}(a A) \exp (a A)-E_{1}(a B) \exp (a B) \\
& \leq M\left[\frac{1}{\alpha}-a E_{1}(a \alpha) \exp (a \alpha)\right]
\end{aligned}
$$

for $a>1$, and in particular

$$
\begin{aligned}
0 & \leq m\left[\frac{1}{\delta}-E_{1}(\delta) \exp (\delta)\right] \\
& \leq E_{1}(A) \exp (A)-E_{1}(B) \exp (B) \\
& \leq M\left[\frac{1}{\alpha}-E_{1}(\alpha) \exp (\alpha)\right]
\end{aligned}
$$

If $A, B>0$ and $B-A>0$, then by 2.16),

$$
\begin{aligned}
0 & \leq\left\|(B-A)^{-1}\right\|^{-1}\left[\|B\|^{-1}-a E_{1}(a\|B\|) \exp (a\|B\|)\right] \\
& \leq E_{1}(a A) \exp (a A)-E_{1}(a B) \exp (a B) \\
& \leq\|B-A\|\left[\left\|A^{-1}\right\|-a E_{1}\left(a\left\|A^{-1}\right\|^{-1}\right) \exp \left(a\left\|A^{-1}\right\|^{-1}\right)\right]
\end{aligned}
$$

for $a>1$, and in particular

$$
\begin{aligned}
0 & \leq\left\|(B-A)^{-1}\right\|^{-1}\left[\|B\|^{-1}-E_{1}(\|B\|) \exp (\|B\|)\right] \\
& \leq E_{1}(A) \exp (A)-E_{1}(B) \exp (B) \\
& \leq\|B-A\|\left[\left\|A^{-1}\right\|-E_{1}\left(\left\|A^{-1}\right\|^{-1}\right) \exp \left(\left\|A^{-1}\right\|^{-1}\right)\right] .
\end{aligned}
$$

More examples of such transforms are

$$
\mathcal{D}\left(w_{1 /\left(\ell^{2}+a^{2}\right)}\right)(t):=\int_{0}^{\infty} \frac{1}{(t+\lambda)\left(\lambda^{2}+a^{2}\right)} d \lambda=\frac{\pi t-2 a \ln (t / a)}{2 a\left(t^{2}+a^{2}\right)}, \quad t \geq 0
$$

and

$$
\mathcal{D}\left(w_{\ell /\left(\ell^{2}+a^{2}\right)}\right)(t):=\int_{0}^{\infty} \frac{\lambda}{(t+\lambda)\left(\lambda^{2}+a^{2}\right)} d \lambda=\frac{\pi a+2 t \ln (t / a)}{2 a\left(t^{2}+a^{2}\right)}, \quad t \geq 0
$$

for $a>0$.
The interested reader may state other similar results by employing the examples of monotone operator functions provided in [3], [4], [5], [8] and [9].

Acknowledgement. The author would like to thank the anonymous referees for valuable comments that have been implemented in the final version of the paper.

References

[1] R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997.
[2] S.S. Dragomir, Reverses of operator Féjer's inequalities, Tokyo J. Math. 44 (2021), no. 2, 351-366.
[3] J.I. Fujii and Y. Seo, On parametrized operator means dominated by power ones, Sci. Math. 1 (1998), no. 3, 301-306.
[4] T. Furuta, Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation, Linear Algebra Appl. 429 (2008), no. 5-6, 972-980.
[5] T. Furuta, Precise lower bound of $f(A)-f(B)$ for $A>B>0$ and non-constant operator monotone function f on $[0, \infty)$, J. Math. Inequal. 9 (2015), no. 1, 47-52.
[6] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123 (1951), 415-438.
[7] K. Löwner, Über monotone Matrixfunktionen, Math. Z. 38 (1934), no. 1, 177-216.
[8] M.S. Moslehian and H. Najafi, An extension of the Löwner-Heinz inequality, Linear Algebra Appl. 437 (2012), no. 9, 2359-2365.
[9] H. Zuo and G. Duan, Some inequalities of operator monotone functions, J. Math. Inequal. 8 (2014), no. 4, 777-781.

Mathematics, College of Engineering \& Science
Victoria University
PO Box 14428
Melbourne City
MC 800
Australia
AND
DST-NRF Centre of Excellence
in the Mathematical and Statistical Sciences
School of Computer Science \& Applied Mathematics
University of the Witwatersrand
Johannesburg
South Africa
e-mail: sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

[^0]: Received: 27.09.2022. Accepted: 05.06.2023. Published online: 26.07.2023.
 (2020) Mathematics Subject Classification: 47A63, 47A60.

 Key words and phrases: operator monotone functions, operator convex functions, operator inequalities, Löwner-Heinz inequality, logarithmic operator inequalities.

 ## (C) 2023 The Author(s).

 This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/1.

