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Abstract. We approach the problem of integration for rough integrands and
integrators, typically representing trajectories of stochastic processes possess-
ing only some Hölder regularity of possibly low order, in the framework of
para-control calculus. For this purpose, we first decompose integrand and in-
tegrator into Paley–Littlewood packages along the Haar–Schauder system. By
careful estimation of the components of products of packages of the integrand
and derivatives of the integrator we obtain a characterization of Young’s inte-
gral. For the most interesting case of functions with Hölder regularities that
sum up to an order below 1 we have to employ the concept of para-control of in-
tegrand and integrator with respect to a reference function for which a version
of antisymmetric Lévy area is known to exist. This way we obtain an interpre-
tation of the rough path integral. Lévy areas being known for most frequently
used stochastic processes such as (fractional) Brownian motion, this integral
serves as a basis for pathwise stochastic calculus, as the integral in classical
rough path analysis.
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1. Introduction

This article is an elaboration of the 16th Lasota lecture given at the Uni-
versity of Silesia in Katowice on January 13, 2023, by the first author. It
is mainly based on [16], and presents an outline of a new approach of inte-
gration which is based on a combination of ideas from Fourier analysis and
a generalization of the concept of differentiation by so-called controlledness,
leading to the notions of para-control calculus. This calculus was recently used
to solve singular stochastic partial differential equations (see [15]), alternative
to Hairer’s regularity theory, for instance in work by the second author.

To fix ideas, the approach explains how to integrate a function f (the inte-
grand) with respect to a function g (the integrator), both Hölder continuous,
and defined on the unit interval. The functions should be imagined as trajec-
tories of solutions of stochastic differential equations, in particular trajectories
of the most prominent process, the Wiener process. As such, their Hölder reg-
ularity degree may be (slightly below) 1/2. As long as one of the functions,
say g, is of bounded variation, and therefore admits a signed interval measure
mg on the Borel sets of the unit interval, Riemann–Stieltjes integration theory
applies to interpret

∫
fdg in terms of the integral

∫
fdmg.

To pass to more general and challenging scenarios which also cover Young’s
integral, or the most advanced rough path integral, in a first step we use
Fourier analytic tools by developping both f and g into Haar–Schauder se-
ries. In this framework, due to the fact that Schauder functions are piecewise
linear and thus of bounded variation, we can integrate at least term by term
in the resulting double series. The problem of defining

∫
fdg is thus deferred

to finding conditions for the termwise integrals to be (double) summable. The
mathematical background for a careful analysis of this problem is given by
Ciesielski’s isomorphism between function spaces (the underlying spaces of
Hölder continuous functions where f and g are located) and sequence spaces
(the normed spaces of their Haar–Schauder coefficients) (Theorem 1, see [16,
Lemma 2.2]). Haar–Schauder coefficients are best viewed in terms of Paley–
Littlewood packages ∆pf resp. ∆pg, summarizing all Haar–Schauder coeffi-
cients of one dyadic generation, say p ≥ 0, over all dyadic intervals of this
generation.

We therefore have to deal with the regularity and summability of terms
of the type ∆pfd∆qg, as functions on the unit interval. We consider these
products in another Haar–Schauder development. Therefore the central part
of our analysis consists in deriving careful estimates of packages of the type
∆i(∆pfd∆qg), in the generation parameters i, p, q ≥ 0. These estimates in
particular present singular terms we call resonances, given if the generations
i and q coincide, and for which the estimate is singularly large. We then
formally develop the integral into three terms, defined by different domains
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of summation in the two dyadic generation indices. They are given by a Bony
paraproduct, a symmetric term, as well as an antisymmetric Lévy area. Using
our estimates on ∆i(∆pfd∆qg) we then show in terms of sequence space
Hölder norms that all three components have essentially different regularity
properties. The most critical one is exhibited by the Lévy area term that is
well defined only if the sum of the Hölder coefficients of f and g exceeds 1.
This turns out to be exactly the case in which Young’s integral is well defined.
So our approach provides a Fourier analytic description of Young’s integral
(Theorem 2, see [16, Theorem 3.14]).

To do the last step and also interpret the rough path integral, a new in-
gredient has to help. We therefore consider a control function x common to
both f and g which in real applications is given for instance by the (vecto-
rial) trajectory of a Wiener process. The notion of control was introduced by
Gubinelli [13]. It basically states that increments of the controlled function f
can be developed in some type of fractional Taylor expansion with respect to
increments of the control x so that f] = f −fx ·x is of double order of Hölder
regularity as f . In the concept we propose, the (fractional) first order correc-
tion fx ·x is replaced by the paraproduct of fx and x (whence the name para-
control calculus). In addition to para-controlledness of f and g by x we need to
know that x possesses an antisymmetric Lévy area, a condition that is satis-
fied by all practically arising trajectories of noise processes such as (fractional)
Brownian motion. Modulo a technical commutator estimate for Lévy area re-
lated aggregates of Paley–Littlewood packages of the form ∆i(∆pfd∆qg) that
make resonances cancel out, we then arrive at a para-control version of the
rough path integral (Theorem 3, see [16, Theorem 4.10]).

Let us briefly explain the structure of the paper. In Section 2 we outline
the problem of rough integration, in particular its origin in Itô’s calculus,
and sketch the use of Fourier analysis. Section 3 is dedicated to recalling
Haar–Schauder expansions and the isomorphism between function and se-
quence Hölder spaces. In Section 4 we discuss the norm inequalities for Paley–
Littlewood packages of the components of the integral, and obtain a descrip-
tion of Young’s integral. In Section 5 we explain how to use the concept of
para-control to go beyond Young’s integral and get a Fourier analytic version
of the rough path integral.

Relevant literature

Starting with the Lévy–Ciesielski construction of Brownian motion, Haar–
Schauder systems of functions have been a very popular tool in stochastic anal-
ysis. They can be used to prove in a comparatively easy way that stochastic
processes belong to Besov spaces; see for example Ciesielski, Kerkyacharian,
Roynette [9], Roynette [35], and Rosenbaum [34]. Baldi and Roynette [3] have



152 Peter Imkeller, Nicolas Perkowski

used Schauder functions to extend the large deviation principle for Brown-
ian motion from the uniform to the Hölder topology; see also Ben Arous and
Ledoux [5] for the extension to diffusions, Eddahbi, N’zi, and Ouknine [6]
for the large deviation principle for diffusions in Besov spaces, and Andresen,
Imkeller, and Perkowski [1] for the large deviation principle for a Hilbert
space valued Wiener process in Hölder topology. Ben Arous, Grădinaru, and
Ledoux [4] use Schauder functions to extend the Stroock-Varadhan support
theorem for diffusions from the uniform to the Hölder topology. Lyons and
Zeitouni [27] use Schauder functions to prove exponential moment bounds for
Stratonovich iterated integrals of a Brownian motion conditioned to stay in
a small ball. Gantert [12] uses Schauder functions to associate to every sam-
ple path of the Brownian bridge a sequence of probability measures on path
space, and continues to show that for almost all sample paths these measures
converge to the distribution of the Brownian bridge. This shows that the law
of the Brownian bridge can be reconstructed from a single “typical sample
path”.

Concerning integrals based on Schauder functions, there are three impor-
tant references: Roynette [35] constructs a version of Young’s integral on Besov
spaces and shows that in the one dimensional case the Stratonovich integral∫ ·
0
F (Ws)dWs, where W is a Brownian motion, and F ∈ C2, can be defined

in a deterministic manner with the help of Schauder functions. Roynette also
constructs more general Stratonovich integrals with the help of Schauder func-
tions, but in that case only almost sure convergence is established, where the
null set depends on the integrand, and the integral is not a deterministic op-
erator. Ciesielski, Kerkyacharian, and Roynette [9] slightly extend the Young
integral of [35], and simplify the proof by developing the integrand in the Haar
basis and not in the Schauder basis. They also construct pathwise solutions
to SDEs driven by fractional Brownian motions with Hurst index H > 1/2.
Kamont [19] extends the approach of [9] to define a multiparameter Young
integral for functions in anisotropic Besov spaces. Ogawa [31, 32] investigates
an integral for anticipating integrands he calls noncausal starting from a Par-
seval type relation in which integrand and Brownian motion as integrator are
both developed by a given complete orthonormal system in the space of square
integrable functions on the underlying time interval. This concept is shown to
be strongly related to Stratonovich type integrals (see Ogawa [32], Nualart,
Zakai [30]), and used to develop a stochastic calculus on a Brownian basis
with noncausal SDE (Ogawa [33]).

Rough paths have been introduced by Lyons [22], see also [21, 24, 25] for
previous results. Lyons observed that solution flows to SDEs (or more gener-
ally ordinary differential equations (ODEs) driven by rough signals) can be
defined in a pathwise, continuous way if paths are equipped with sufficiently
many iterated integrals. More precisely, if a path has finite p–variation for
some p ≥ 1, then one needs to associate bpc iterated integrals to it to obtain an
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object which can be taken as the driving signal in an ODE, such that the solu-
tion to the ODE depends continuously on that signal. Gubinelli [13, 14] simpli-
fied the theory of rough paths by introducing the concept of controlled paths,
on which we will strongly rely in what follows. Roughly speaking, a path f
is controlled by the reference path x if the small scale fluctuations of f “look
like those of x”. Good monographs on rough paths are [26, 23, 11, 10].

Finally let us remark that, even if only quite implicitly, paraproducts based
on the classical Fourier transform have already been exploited in the rough
path context in the work of Unterberger on the renormalization of rough
paths [36, 37], where it is referred to as “Fourier normal-ordering”, and in the
related work of Nualart and Tindel [29].

2. Integration in Itô’s calculus

Kolmogorov’s equation, a prototype of which is given by

∂

∂t
u(t, x) = b(x)

∂

∂x
u(t, x) + σ2(x)

∂2

∂x2
u(t, x),

combined with his pathwise approach of the diffusion paradigm in classical
mechanics, came along with a considerable challenge to the theory of inte-
gration. His pathwise perception of the diffusion process finally led to the
stochastic differential equation

X(t) =

∫ t

0

b(X(s))ds+

∫ t

0

σ(X(s))dW (s).

Here Brownian motion W appears, the trajectories of which are known to
describe an erratic time evolution, expressed for instance by the fact that they
are only α-Hölder continuous for α < 1/2. As candidates for an integrator in
the stochastic integral

∫ t
0
σ(X(s))dW (s) the trajectories of W did therefore

not comply with the notions of integrals known by the time of Kolmogorov’s
and Itô’s earlier work. It led Itô to the concept of an integral named after him,
that in the early days of stochastic analysis could only be understood as a limit
in probability in a functional sense. A pathwise understanding of this integral
notion had to wait until about three decades ago, the work initiated by Lyons
(see [22] in his rough path analysis), its deeper significance for (stochastic)
analysis until the more recent construction of regularity theory by Hairer,
see [17].
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In what follows, we shall outline an approach of integration suitable to cope
with the requirements of stochastic analysis, which uses ideas from Fourier
analysis, the development of which was strongly influenced by several Pol-
ish mathematicians. To simplify the presentation, we shall stick to a one-
dimensional setting, and assume that our functions f and g taking the roles
of integrand and integrator, are defined on the unit interval [0, 1] and take val-
ues in R. We aim at understanding

∫
fdg, of course keeping in mind that both

functions symbolize trajectories of stochastic processes, and consequently are
only α-Hölder for some α ∈]0, 1[. Below the critical value α = 1/2 we shall
recover the situation encountered in stochastic analysis with trajectories as for
Brownian motion. This critical range is governed by rough path analysis. So
our approach will also include an alternative approach of rough path calculus,
with a Fourier analytic flavor. In the setting of the Riemann–Stieltjes integra-
tion theory, g would be of bounded variation, to define an interval measure
mg on the Borel sets of [0, 1], and clearly∫ t

0

f(s)dg(s) =

∫ t

0

f(s)dmg(s),

where the latter is the Riemann–Stieltjes integral of f with respect to the
signed measure mg. The roles of f and g can of course be switched, as seen
via integration by parts: if f is of bounded variation with signed interval
measure mf , it provides an integral of f with respect to g by the formula∫ t

0

f(s)dg(s) = f(t)g(t)− f(0)g(0)−
∫ t

0

g(s)dmf (s),

exhibiting an obvious tradeoff between the regularities of f and of g required
for the integral to be well defined. In our approach, we shall assume that
f is α-Hölder continuous, g β-Hölder continuous, with α, β ∈]0, 1[. In case
α + β > 1 we shall recover

∫
fdg in terms of the the well known Young

integral. In case α + β ≤ 1, in the domain of rough path analysis, we shall
use Gubinelli’s concept of controlledness along with Fourier analytic ideas, to
present a version of the rough path integral in terms of para-control analysis.

Here is the central idea of our approach in a nutshell. It is based on Haar-
-Schauder expansions of continuous functions h : [0, 1]→ R given by

h(t) =

∞∑
p≥0,0≤m≤2p

〈Hpm, dh〉Gpm(t),

with Haar functions (Hpm)p≥0,1≤m≤2p , and their primitives, called Schauder
functions, denoted by Gpm, p ≥ 0, 0 ≤ m ≤ 2p. Since the Haar functions
are piecewise constant, the Schauder functions are piecewise linear, hence
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Lipschitz continuous. Consequently, we may integrate termwise in the Haar–
Schauder expansions of f and g, to get, provided summability is guaranteed,∫ t

0

f(s)dg(s) =

∞∑
p,m, q,n

〈Hpm, df〉〈Hqn, dg〉
∫ t

0

Gpm(s)dGqn(s).

Details of the following outline, especially proofs not given here, can be found
in [16].

3. The Haar–Schauder expansion and Ciesielski’s isomorphism

Let us now be more precise with the application of Fourier analytic con-
cepts in integration theory. We start with briefly recalling the Haar and
Schauder systems. For p ≥ 0, 1 ≤ m ≤ 2p define

Hpm(t) :=
√

2p1[m−1
2p , 2m−1

2p+1 )(t)−
√

2p1[ 2m−1

2p+1 ,
m
2p )(t),

and let H00 = 1, Hp0 = 0, p ≥ 0. The family (Hpm)p≥0,0≤m≤2p is called
family of Haar functions (see Figure 1). The Haar functions are a complete
orthonormal system (CONS) in L2([0, 1]).
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Figure 1. Haar functions: generations p = 1, 2

The primitives of the Haar functions, given by

Gpm(t) =

∫ t

0

Hpm(s)ds, t ∈ [0, 1], p ≥ 0, 0 ≤ m ≤ 2p,

are called Schauder functions (see Figure 2).
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Figure 2. Schauder functions: generations p = 1, 2

Here is the basic idea underlying Haar–Schauder expansions of continuous
functions f . Assume in addition that f =

∫ ·
0
ḟ(s)ds with ḟ ∈ L2([0, 1]) (write

f ∈ H). Then we may write for t ∈ [0, 1], using the expansion of ḟ by the
CONS given by the Haar functions

f(t) =

∫ t

0

∑
p≥0,0≤m≤2p

〈Hpm, ḟ〉Hpm(s)ds =
∑

p≥0,0≤m≤2p
〈Hpm, ḟ〉Gpm(t).

To see that this expansion in fact extends to larger spaces of continuous func-
tions, at least Hölder spaces, let us for convenience abbreviate the endpoints of
the dyadic intervals relevant in the definition of Haar and Schauder functions.
Let for p ≥ 0, 0 ≤ m ≤ 2p

t0pm =
m− 1

2p
, t1pm =

2m− 1

2p+1
, t2pm =

m

2p
.

And with this notation let

〈Hpm, ḟ〉 =: 〈Hpm, df〉 =
√

2p
[
2f(t1pm)− f(t0pm)− f(t2pm)

]
.

It is important to realize that this definition makes sense for any continuous
function, even if it is not in H. Further, for 0 < α < 1, denote by

|f |α = sup
0≤s,t≤1

|f(t)− f(s)|
|t− s|α

, Cα = {f : f continuous, |f |α <∞},
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the α-Hölder norm and the space of α-Hölder continuous functions. Then, by
using the evident inequality

|
[
2f(t1pm)− f(t0pm)− f(t2pm)

]
|

≤ 2−(p+1)α

[
|t1pm)− f(t0pm)|
|t1pm − t0pm|α

+
|t2pm)− f(t1pm)|
|t2pm − t1pm|α

]
≤ 2 · 2−(p+1)α|f |α,

we obtain

(1) |〈Hpm, df〉| ≤ c2p(
1
2−α)|f |α

with a universal constant c. In addition, observe that in one dyadic gener-
ation p, Haar and Schauder functions numbered by m, 1 ≤ m ≤ 2p have
their support on the dyadic interval [t0pm, t

2
pm]. As a consequence, Haar and

Schauder functions of the same dyadic generation have disjoint support, and
therefore

(2) ||
∑

1≤m≤2p
Gpm||∞ = 2−1−

p
2

(see Figure 3).
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Figure 3. ||Gpm||∞ = 2−p/2−1
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This in turn implies that for f ∈ Cα we have∥∥∥∥∥∥
∑
p≥K

2p∑
m=0

〈Hpm, df〉Gpm

∥∥∥∥∥∥
∞

≤ C2−αK |f |α.

And so the Haar–Schauder representation extends to the closure of H w.r.t.
| · |α, i.e. Cα. The Haar–Schauder expansion on Hölder spaces even provides a
correspondence between spaces of functions and sequence spaces, comprised
in Ciesielski’s isomorphism that we shall explain in the following. To present
it in a somewhat simpler and more concise notation, and since we do not have
to emphasize the concepts of orthogonality in the Hilbert space L2([0, 1]) any
longer, let us use the following system of functions.

Define the modified Haar–Schauder system by rescaling

χpm = 2
p
2Hpm, ϕpm = 2

p
2Gpm, p ≥ 0, 0 ≤ m ≤ 2p.

In these terms the modified Haar–Schauder expansion of a function f reads

f =
∑
pm

〈Hpm, df〉Gpm=
∑
pm

〈2−pχpm, df〉ϕpm=
∑
pm

fpmϕpm, ||ϕpm||∞=
1

2
,

with modified Haar–Schauder coefficients fpm = 〈2−pχpm, df〉 = 2f(t1pm) −
f(t0pm) − f(t2pm). We remark that the (modified) Schauder functions vanish
at the boundaries of dyadic intervals of generation p, i.e. at tjpm for j = 0, 2.
By the fact that convergence of finite sums of the modified Haar–Schauder
expansion to the limiting f is uniform on [0, 1] (see (2)), this observation
entails that

fp =
∑
q≤p

2q∑
m=1

fqmϕqn

is the linear interpolation of f on the dyadic points tipm, i = 0, 1, 2, m =
0, . . . , 2p.

Let us next define a norm on sequence space that will turn out to be equiv-
alent to the usual Hölder norm on function space in Ciesielski’s isomorphism.
Let

(3) ||f ||α = sup
pm

2pα|fpm|.
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If we translate into the original Haar–Schauder system, and recall (1), we
easily see that (for details consult [16])

||f ||α = sup
pm

2p(α−
1
2 )|〈Hpm, df〉| ∼ |f |α.

So we obtain the following isomorphism statement by Ciesielski [8]. Here `∞
denotes the space of bounded real valued sequences, normed by || · ||∞.

Theorem 1.

Tα : Cα → `∞, f 7→ (2pα fpm)p≥0,1≤m≤2p

is an isomorphism between a function space and a sequence space.

4. Integration via Haar–Schauder systems: the Young integral

Let us now return to the problem of integration set out initially. We assume
that f ∈ Cα, g ∈ Cβ for some α, β ∈]0, 1[.With the isomorphism of Theorem 1
we shall translate the integrability problem into sequence space terms. In the
terminology developed in Section 3 we may write

f =
∑
p,m

fpmϕpm, g =
∑
p,m

gpmϕpm.

The Schauder functions are piecewise linear, thus of bounded variation. There-
fore it is possible to formally define∫ t

0

f(s)dg(s) =
∑

p,m, q,n

fpmgqn

∫ t

0

ϕpm(s)dϕqn(s)

=
∑

p,m, q,n

fpmgqn

∫ t

0

ϕpm(s)χqn(s)ds.

Of course, the interchange of summation and termwise integration in the pre-
ceding formula needs to be justified. For this purpose, we also have to study the
behaviour of the integrals on the right hand side as functions of t. We there-
fore develop the resulting termwise functions of t again into a Haar–Schauder
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series, to face the somewhat tedious but elementary task of controlling for
i, j, p,m, q, n the scalar products

〈2−iχij , ϕpmχqn〉.

The following Lemma provides an estimate for these objects. It already makes
emerge the important and difficult phenomenon of resonance, hidden behind
the size of the estimate in case the dyadic generations of the integrator func-
tion q of χqn and of the developing function i of χij coincide.

Lemma 1. For i, p, q ≥ 0, 0 ≤ j ≤ 2i, 0 ≤ m ≤ 2p, 0 ≤ n ≤ 2q

|〈2−iχij , ϕpmχqn〉| ≤ 2−2(i∨p∨q)+p+q,

except in case p < q = i, in which we have

|〈2−iχij , ϕpmχqn〉| ≤ 1.

The proof of Lemma 1 consists in an elementary and careful distinction
of cases. For the case i < p < q Figure 4 immediately reveals the desired
estimate. For details see [16, Lemma 3.9].

𝜒𝑞𝑛

Τ1 2

2𝑞

− Τ1 2

−2𝑞

𝑡𝑞𝑛
0 𝑡𝑝𝑚

0 𝑡𝑝𝑚
2 𝑡𝑞𝑛

2 𝑡𝑖𝑗
1𝑡𝑖𝑗

0

𝜑𝑝𝑚

Figure 4. Case i < q < p, |〈2−iχij , ϕpmχqn〉| = 2q−p = 2p+q−2(i∨p∨q)
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We next translate our estimates into the Paley–Littlewood language, more
familiar in Fourier analysis (see [2]). For f =

∑
pm fpmϕpm as above let

∆pf =

2p∑
m=0

fpmϕpm, Spf =
∑
q≤p

∆qf.

We call ∆pf the Paley–Littlewood package related to dyadic generation p ≥ 0.
By definition of the sequence space norm (3) we may write

(4) f ∈ Cα iff ||f ||α = sup
p
||(2pα||∆pf ||∞)||l∞ <∞.

We can interpret the detailed estimates of Lemma 1 by summarizing them
over the individual intervals of related dyadic generations numbered by j,m, n
respectively. For details see [16, Corollaries 3.10 and 3.11]. The result is

Lemma 2. For some α, β ∈]0, 1[ let f ∈ Cα, g ∈ Cβ. For i, p, q ≥ 0 we
have

||∆i(∆pf∆qg)||∞ ≤ 2−(i∨p∨q)−i+p+q||∆pf ||∞||∆qg||∞,

except in case p < q = i, in which we have

||∆i(∆pf∆qg)||∞ ≤ ||∆pf ||∞||∆qg||∞.

Moreover, for p > i or q > i we have

∆i(∆pf∆qg) = 0.

In the preceding Lemma the resonance phenomenon emerges in the size
of the estimate for the ith package of the product of pth and qth package
in case i and q coincide. The last statement just expresses the fact already
encountered in Section 3 that Schauder functions vanish at the boundaries
of dyadic intervals, and that dyadic intervals form a nested sequence in the
generation number.

Decomposing f and g into their Paley–Littlewood packages, we next give
our desired integral

∫
fdg a formal decomposition into three terms. These

terms are then investigated for their individual summability properties which
will turn out to be essentially different, reflecting the different estimates for
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packages proved in Lemma 2 which exhibit in particular the resonance phe-
nomenon. We may write∫

fdg =
∑
p,q

∫
∆pfd∆qg(5)

=
∑
p<q

∫
∆pfd∆qg +

∑
p≥q

∫
∆pfd∆qg

=
∑
q

∫
Sq−1fd∆qg +

∑
p

∫
∆pfd∆pg +

∑
p

∫
∆pfdSp−1g.

In view of the second part of Lemma 2, we expect the first part to be rougher.
To combine the first and the third parts, we use integration by parts, to get∑

q

∫
Sq−1fd∆qg =

∑
q

Sq−1f∆qg −
∑
q

∫
∆qgdSq−1f(6)

=: π<(f, g)−
∑
q

∫
∆qgdSq−1f,

thereby already defining

(7) π<(f, g) :=
∑
q

Sq−1f∆qg

as the Bony paraproduct of f and g. For the name of the concept and its Fourier
analytic significance see [2]. Combining (5) and (6), using the notion (7), and
rearranging we obtain∫

fdg = π<(f, g) +
∑
p

∫
∆pfd∆pg

+
∑
q

∫
∆qfdSq−1g −

∑
q

∫
∆qgdSq−1f.

Defining further the symmetric part

S(f, g) =
∑
p

∆pfd∆pg = c+
1

2

∑
p

∆pf∆pg

and the antisymmetric Lévy area

L(f, g) =
∑
p

(∆pfdSp−1g −∆pgdSp−1f),
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we finally arrive at the basic decomposition of our desired integral into a Bony
paraproduct term, a symmetric term, and an antisymmetric Lévy area term∫

fdg = π<(f, g) + S(f, g) + L(f, g).

We just have to assess the different summability or regularity properties of
the three terms that result from applications of the elementary estimates of
Paley–Littlewood packages in Lemma 2.

In case the Hölder regularity coefficients of f and g are large enough,
the three components of the integral behave well. The following statement
confirms this and shows the essentially different regularity behaviour of the
three components. It is obtained by applying Lemma 2, and recalling the
definition of the sequence space Hölder norm (4). To substantiate this scheme
of arguing, let us just treat the symmetric part. In fact, for i ≥ 0 we have

||∆if∆ig||∞ ≤ ||∆if ||∞||∆ig||∞ ≤ 2−(α+β)i||f ||α||g||β.

With a similar reasoning for the other components, we finally obtain

Lemma 3. For any α, β ∈]0, 1[ we have

||S(f, g)||α+β ≤ C||f ||α||g||β,

and

||π<(f, g)||β ≤ C||f ||∞||g||β.

Moreover, if α+ β > 1 we have

||L(f, g)||α+β ≤ C||f ||α||g||β.

For details see [16] again (Lemma 3.3 for the paraproduct, Lemma 3.12
for the Lévy area, and Lemma 3.13 for the symmetric part). The findings
of Lemma 3 give rise to the following Theorem, describing the results of our
approach for the Young integral, identical to the classical integral studied
by Young [38], and used in context of fractional analysis (see for example
Lejay [20]).
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Theorem 2. Let α, β ∈ (0, 1) be such that α+ β > 1, and let f ∈ Cα and
g ∈ Cβ. Then

I(f, dg) :=
∑
p,q

∫ ·
0

∆pfd∆qg ∈ Cβ and ‖I(f, dg)‖β . ‖f‖α‖g‖β.

Furthermore

‖I(f, dg)− π<(f, g)‖α+β . ‖f‖α‖g‖β.

It is important to note that we get a version of the Lévy area only in case
α + β > 1. If f and g arise in the context of Brownian motion, we usually
only have α, β < 1/2. This leads us into the domain of rough path analysis,
for which, as we shall outline in the subsequent Section, Lévy’s area has to be
given externally.

5. Integration via Haar–Schauder expansions: beyond Young’s
integral, paracontrol

Let f ∈ Cα, g ∈ Cβ again. Now the focus is on the situation α + β ≤ 1,
i.e. the setting of rough path analysis. In this setting, our Fourier analytic
approach needs an additional ingredient. It is based on Gubinelli’s concept of
controlled paths, generalizing the concept of differentiability of classical anal-
ysis, and of Taylor expansions of one function with respect to derivatives of
the other one. Fourier analysis and controlledness combine in the following
concept of para-control. It makes reference to a particular function x with
respect to which the control relationship is given. In a context in which the
functions are trajectories of stochastic processes, we can think of x as a tra-
jectory of the Brownian motion. We shall see that control makes the crucial
object we encountered in the derivation of Young’s integral, namely antisym-
metric Lévy area, well behaved. Here is the only place in this paper at which
we prefer to deviate from one-dimensionality for our integrator functions that
was assumed so far for simplicity of presentation. So for this Section we as-
sume that x = (x1, . . . , xd) is a d-vector of Hölder continuous functions. The
requirements discussed before such as Hölder regularity are now understood
to be fulfilled componentwise. So x ∈ Cα just means xi ∈ Cα for all 1 ≤ i ≤ d.
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Definition 1. For α > 0 let x ∈ Cα. Then

Dα
x =

{
f ∈ Cα : ∃fx ∈ Cα s.t. f ] = f − π<(fx, x) ∈ C2α

}
.

f ∈ Dα
x is called para-controlled by x, fx derivative of f w.r.t. x.

Here paraproducts refer to componentwise objects π<(fx, xi), 1 ≤ i ≤ d.
The original concept of control by Gubinelli [13] in our framework requires the
existence of a derivative fx so that subtracting its (componentwise) product
with the control function x from f improves the Hölder regularity by the
factor 2, more formally f ] = f − fx · x ∈ C2α. In our concept, described
in Definition 1, the control product fx · x is replaced by the para-product
π<(fx, x). On the space of para-controlled functions Dα

x define the norm

||f ||x,α = ||f ||α + ||fx||α + ||f ]||2α.

It immediately becomes clear how the improvement of the regularity order
by the factor 2 affects the integral calculus of a function and its control func-
tion x. Recall that the crucial object that causes problems in case α+β ≤ 1 is
the antisymmetric Lévy area. Now if α > 1/3, then since α+2α = 3α > 1 the
term L(f −π<(fx, x), x) is well defined. It therefore remains to make sense of
L(π<(fx, x), x). This is done by a so-called commutator estimate, that in this
context takes the form

||L(π<(fx, x), x)−
∫ ·
0

fx(s)dL(x, x)(s)||3α ≤ ||fx||α||x||2α,

This somewhat technical estimate is given in [16, Proposition 4.7]. It basically
realizes a cancellation of the resonant parts (see Lemma 2) in the two expres-
sions defining the antisymmetric Lévy area. We still have to suppose that the
Lévy area of the control vector x exists and the integral is well defined. Here
is why we chose to present the theory for vectorial control functions x. If x
were one-dimensional, antisymmetric Lévy area would trivialize. In the mul-
tidimensional case this is no more true. And in fact the area of application
of our approach of integration usually involves a multi-dimensional Wiener
process W = (W 1, . . . ,W d), whose trajectories we usually imagine taking the
role of integrators in our integrals. The complication related to the non-trivial
Lévy area of vectorial integrands is well reflected in stochastic analysis where
stochastic integration theory with respect to one-dimensional Brownian mo-
tions is much simpler, for instance allowing Zvonkin’s [39] approach of flows
of stochastic differential equations, whereas for multidimensional Wiener pro-
cesses the entire Lie algebra of the underlying vector fields plays a role in the
description of stochastic flows. We obtain
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Theorem 3. Let α ∈ (1/3, 1), α 6= 1/2, α 6= 2/3. Let x ∈ Cα, f, g ∈ Dα
x .

Assume that the Lévy area

L(x, x) := lim
N→∞

(
L(SNx

k, SNx
`)
)
1≤k≤d,1≤`≤d

converges uniformly, such that supN‖L(SNx, SNx)‖2α <∞. Then

I(SNf, dSNg) =
∑
p≤N

∑
q≤N

∫ ·
0

∆pf(s)d∆qg(s)

converges in Cα−ε for all ε > 0. Denote the limit by I(f, dg). Then I(f, dg) ∈
Dα
x with derivative fgx, and

||I(f, dg)||x,α . ||f ||x,α
(
1 + ||g||x,α

)(
1 + ||x||α + ||x||2α + ||L(x, x)||2α

)
.

The integral obtained in Theorem 3 is in fact, in the terminology of stochas-
tic analysis, of Stratonovich type. This becomes clear from Proposition 4.15
of [16]. Its Itô counterpart with a version of the usual conversion formula is
treated in Theorem 5.2 of [16]. Let us finally remark that for the usual vec-
torial stochastic processes such as Brownian motion or fractional Brownian
motion, Lévy areas can rather easily be shown to exist. So for functionals
of these processes such as solutions of stochastic differential equations driven
by them, for which para-control is relatively simple to establish, Theorem 3
applies, to allow a pathwise interpretation of stochastic integrals appearing in
the stochastic differential equations. See once again [16, Section 5] for details.
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