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PROBABILITY ON SUBMETRIC SPACES

Adam Jakubowski

The XV Annual Lecture dedicated to the memory of Professor Andrzej Lasota

Abstract. A submetric space is a topological space with continuous metrics,
generating a metric topology weaker than the original one (e.g. a separable
Hilbert space with the weak topology).

We demonstrate that on submetric spaces there exists a theory of conver-
gence in probability, in law etc. equally effective as the Probability Theory on
metric spaces. In the theory on submetric spaces the central role is played by
a version of the Skorokhod almost sure representation, proved by the author
some 25 years ago and in 2010 rediscovered by specialists in stochastic partial
differential equations in the form of “stochastic compactness method”.

1. The stochastic compactness method

The stochastic compactness method is a heuristic that is frequently used in
construction of solutions to stochastic partial differential equations (SPDEs)
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and in other problems involving stochastic processes with complicated struc-
ture. A detailed description of this method as well as several examples can be
found e.g. in [4].

The paper by Ondreját [17] was, in some sense, a turning point in consider-
ations based on the stochastic compactness method. He dealt with a nonlinear
wave equation

(1) utt = Au+ f(x, u, ut,∇xu) + g(x, u, ut,∇xu)Ẇ ,

(here {W (t, s)}t≥0,s∈R1 is a spatially homogeneous Wiener process) and was
able to construct a sequence (un, unt ) of potential approximations of solu-
tions. Then, according to a general scenario, he proved that this sequence is
uniformly tight, when considered as stochastic processes with trajectories in
X = Cw

(
R+,W

1,2
loc

)
× Cw

(
R+, L

2
loc

)
, with Cw standing for weakly continuous

functions. Next, he applied a version of the Skorokhod representation proved
by the author in 1995 [11], in order to find a subsequence (unk , unk

t ), admitting
a sequence of random variables {Yk}k=0,1,2,..., defined on ([0, 1],B[0,1], `) and
with values in X and such that
(i) (unk , unk

t ) ∼ Yk, k = 1, 2, . . . (i.e. Yk and (unk , unk
t ) have the same dis-

tributions).
(ii) Yk(ω)→ Y0(ω) in X , ω ∈ [0, 1].

Finally, he showed that Y0 is a weak solution (in the distributional sense) of
equation (1).

The novelty of Ondreját’s simplifying approach (see also [5]) consisted
in the fact that X is a non-metric space with weak topology and in such
spaces the uniform tightness (uniform concentration on compacts) is much
easier to obtain. In other words, Ondreját’s paper demonstrated that standard
deterministic methods based on weak topologies are accessible also in the
stochastic case. Consequently, the almost sure Skorokhod representation in
non-metric spaces has become a standard tool in the theory of SPDE. This
can be easily seen by the analysis of citation in Google Scholar: on January 6th,
2022, paper [11] had 179 citations, including 158 citation since 2010 and ca 30
citations every year since 2019.

The purpose of the present paper is to show that the almost sure Skorokhod
representation is not an ad hoc device but it is a part of elegant theory of
random elements taking values in submetric spaces. The details and proofs of
results provided without direct reference can be found in the more extensive
work [14].
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2. The original Skorokhod representation

A.V. Skorokhod, in his seminal paper [20] proved the following result.

Theorem 2.1. Let Xn, n = 0, 1, 2 . . . be random elements with values in
a separable and complete metric space (X , ρ). Suppose that Xn−→DX0, i.e.

(2) Ef(Xn)→ Ef(X0),

for every bounded and continuous function f : X → R. Then there exists
a probability space

(
Ω,F ,P

)
and random elements Yn :

(
Ω,F ,P

)
→ (X ,Bρ),

n = 0, 1, 2, . . ., such that

Y0 ∼ X0, Yk ∼ Xk, k = 1, 2, . . . , and ρ(Yn(ω), Y0(ω))→ 0, ω ∈ Ω.

In fact one can take as
(
Ω,F ,P

)
the standard probability space(

[0, 1],B[0,1], `
)
.

Today we know more. We will say that a family P(X , τ) of tight probability
measures on a topological space

(
X , τ

)
is simultaneously parametrised, if there

is a probability space
(
Ω,F ,P

)
and a map

P(X , τ) 3 µ 7→
(
ξµ : (Ω,F ,P

)
→
(
X ,Bτ

))
,

such that for every µ the law of ξµ is µ and

ξµn(ω)−→
τ
ξµ0(ω) for P-almost all ω ∈ Ω,

whenever µn is weakly convergent to µ0.
On Polish spaces simultaneous paramterisations were constructed inde-

pendently by Blackwell & Dubbins [2] with Ω = [0, 1]2 (rather a sketch of the
proof) and Fernique [8] with Ω = [0, 1] (a complete, detailed proof). Later
Bogachev & Kolesnikov [3] showed that the simultaneous paramterisation can
be obtained from the one-dimensional case (X = R1) using advanced tools of
General Topology and Functional Analysis.
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3. The Skorokhod representation in non-metric spaces

Let us consider a topological space
(
X , τ

)
. Suppose that on this space

there exists a countable family {fi}i∈I of continuous functions that separates
points in X , i.e. equalities fi(x) = fi(y), i ∈ I, imply x = y. We will say that(
X , τ

)
has the property CCSP.

Let us recall that a family of probability measures {µi}i∈I on a topological
space

(
X , τ

)
is uniformly τ -tight, if for every ε > 0 there is a τ -compact set

Kε such that

µi
(
Kε

)
> 1− ε, i ∈ I.

The following strong version of the classic Prohorov Theorem [19] was
proved by the author in [11].

Theorem 3.1. Suppose that
(
X , τ

)
has the property CCSP. Let M =

{µi}i∈I be a uniformly τ -tight family of probability measures on
(
X , τ

)
. Then

in every sequence {µn}n∈N ⊂M one can find a subsequence {µnk
}k∈N admit-

ting a Skorokhod representation {Yk}, k = 0, 1, 2, . . ., defined on
(
[0, 1],B[0,1], `

)
and such that

Yk ∼ µnk
, k = 1, 2, . . . , and Yn(ω)−→

τ
Y0(ω), ω ∈ Ω.

The following Skorokhod representation for subsequences follows immedi-
ately.

Corollary 3.2. Under the property CCSP, if Xn−→DX0 (i.e. (2) holds)
and the sequence {Xn} is uniformly tight, then every subsequence {Xnk

} con-
tains a further subsequence {Xnkj

} that admits a Skorokhod representation
{Yj}j=0,1,2,... on [0, 1], with Y0 ∼ X0.

This imperfect form of the Skorokhod representation was widely contested.
But Bogachev & Kolesnikov [3] constructed an example showing that in gen-
eral it is impossible to construct a representation for the whole sequence. In
their example the sequence takes values in the space R∞0 (infinite sequences
with finite number of non-zero terms) equipped with the topology of inductive
limit.

Remark 3.3. In Corollary 3.2, the “additional” assumption on the uniform
tightness is essential! Even very nice spaces with the property CCSP need not
be Prohorov!



142 Adam Jakubowski

Let us consider an old example due to Fernique [7]. Let H be a separable
Hilbert space and let τw be the weak topology on H. Fernique constructed
a sequence {Xn} of H-random elements such that

Xn −−−−→
D(τw)

X0 ≡ 0

and for every R > 0

lim
n→∞

P
(
‖Xn‖ > R

)
= 1.

The latter means that no subsequence of {Xn} is uniformly τw-tight on
(
H, τw

)
and no subsequence of {Xn} admits a Skorokhod representation.

On the other hand, if Xn−→D(τw)X0 and we know that

lim
R→∞

sup
n
P
(
‖Xn‖ > R

)
= 0,

then in every subsequence {Xnk
} one can find a further subsequence {Xnkj

}
and a sequence of random elements Y0, Y1, Y2, . . ., defined on

(
[0, 1],B[0,1], `

)
and taking values in

(
H, τw

)
, with the properties that

(i) X0 ∼ Y0, Xnkj
∼ Yj , j = 1, 2, . . ..

(ii) For almost all ω ∈ [0, 1] and every h ∈ H we have

〈h, Yn(ω)〉 → 〈h, Y0(ω)〉.

4. Submetric spaces

We shall develop a more general theory for so-called submetric spaces.
Suppose that a topological space

(
X , τ

)
has the property CCSP, i.e. there is

a sequence {fi}i∈N of continuous functions on
(
X , τ

)
that separates the points

in X . Let us consider the function

X × X 3 (x, y) 7→ d(x, y) =
∞∑
i=1

1

2i
|fi(x)− fi(y)|

1 + |fi(x)− fi(y)|
.

Clearly, this is a continuous metrics on X . Hence τd ⊂ τ , while in general
τd  τ !
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Definition 4.1. A topological space
(
X , τ

)
is called submetric, if τ con-

tains a metric topology τm.

The name “submetric” was coined in [9], where a topological character-
ization of submetric spaces was also given. It should be stressed, however,
that our aim is different – we are interested in consequences of existence of
a continuous metrics and not in avoiding metrics in our considerations.

From a probabilistic point of view submetric spaces are useful and inter-
esting.

Theorem 4.2. Theorem 3.1 remains valid on submetric spaces.

Let
(
X , τ

)
be a submetric space and let τd ⊂ τ be the topology generated

by a metrics d, i.e. d is compatible with τ . Let K ⊂ X be τ -compact. It follows
from the minimal property of compact topology that on K the topologies τ
and τd coincide. This means, in particular, that τ -compact sets are metrisable.

Moreover, let K be τ -compact and let xn ∈ K, n = 0, 1, 2, . . .. Let δ be
another metrics on X , compatible with τ . Then d(xn, x0)→ 0 if, and only if,
δ(xn, x0) → 0. So on compacts all compatible metrics are equivalent. This is
the reason why we do not mention any particular metrics in the definition of
submetric space.

5. The space L0

(
Ω : (X , τ )

)
of random elements

Let
(
X , τ

)
be a submetric space and let X :

(
Ω,F ,P

)
→ X . Should we

demand that X−1(τ) ⊂ F , or, equivalently, X−1(Bτ ) ⊂ F? We do not know
the structure of Bτ . Instead we propose measurability properties which are
really necessary.

Let K be the family of τ -compact sets. Suppose that X−1(K) ∈ F , K ∈ K.
Then, clearly, X−1(σ(K)) ⊂ F .

More general, let Rτ = {A ⊂ X ; A ∩ K ∈ σ(K),K ∈ K}. Of course
Bτ ⊂ Rτ . If we assume that PX = P ◦ X−1 is τ -tight, then X−1(Rτ ) ⊂ F ,
where F is the completion of the σ-algebra F with respect to the measure P.

Definition 5.1. Let
(
X , τ

)
be a submetric space with the family of com-

pact subsets K. The space L0

(
(Ω,F ,P) : (X , τ)

)
= L0

(
Ω : (X , τ)

)
consists of

maps X : Ω→ X satisfying the following conditions.
(i) X−1(K) ⊂ F .
(ii) The law P ◦X−1 is τ -tight.
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In spaces L0

(
Ω : (X , τ)

)
we have a natural convergence that parallels the

convergence in probability in metric spaces.

Lemma 5.2. Let
(
X , τ

)
be a submetric space with a compatible metrics d.

Let Xn ∈ L0

(
Ω : (X , τ)

)
, n = 0, 1, 2, . . .. Suppose that the sequence {Xn} is

uniformly τ -tight and Xn−→P(d)X0, i.e.

∀ε>0 P
(
d(Xn, X0) > ε

)
→ 0.

Let δ be another metrics on X , compatible with τ . Then we also have

Xn −−→
P(δ)

X0.

It follows that this type of convergence does not depend on metrics!

Definition 5.3. Let Xn ∈ L0

(
Ω : (X , τ)

)
, n = 0, 1, 2, . . .. Let d be a

τ -compatible metrics on X . We will say that Xn converges to X0 in the sense
of P − τ (and will write Xn−→P−τ X0), if {Xn} is uniformly τ -tight and
Xn−→P(d)X0.

Definition 5.4. The natural topology on the space L0

(
Ω: (X , τ)

)
is the

sequential topology generated by the convergence −→P−τ .

Comments 5.5.
1. Let us recall that a subset F ⊂ L0

(
Ω : (X , τ)

)
is closed in the natural

topology, if it contains limits of all sequences which are convergent in the
sense P− τ and consist of elements of F .

2. If τ is generated by a metrics d, then Xn−→P−τ X0 if, and only if,
Xn−→P(d)X0! This is essentially LeCam’s theorem [16]. Thus in the met-
ric case the theory of spaces L0

(
Ω : (X , τ)

)
reduces to the standard theory

of L0 spaces with the convergence in probability of random elements with
tight laws.

3. Let d be compatible with τ . Let us consider the (semi-)metrics

d̃(X,Y ) = E
d(X,Y )

1 + d(X,Y )
.

L0

(
Ω : (X , τ)

)
with the natural topology is a submetric space!



Probability on submetric spaces 145

6. More on submetric spaces

Let (X , τ) be a submetric space. We will say that F ⊂ X is τs-closed, if the
limits of τ -convergent sequences of elements of F remain in F . The topology
given by the τs-closed sets is called the sequential topology generated by τ
and will be denoted by τs.

Theorem 6.1. If (X , τ) is a submetric space, then the topology τs is the
finest topology with the same compact sets as τ .

It follows that if {Xi}i∈I is a uniformly τ -tight family of random elements
in (X , τ), then it is also uniformly τs-tight.

Theorem 6.2. A subset of a submetric space is compact if, and only if, it
is sequentially compact.

Theorem 6.3. In submetric space the closure of a relatively compact set J
coincides with the metric closure and consists of limits of convergent sequences
of elements of J .

But the closure of a relatively compact set need not be compact!

7. Convergence in law on submetric spaces

A commonly accepted definition of the convergence in law Xn−→D(τ)X0,
applicable in any sufficiently regular topological space

(
X , τ

)
, is given by

(2). This definition may be rewritten in terms of distributions: if µn ∼ Xn

(i.e. µn(B) = P
(
Xn ∈ B

)
), n = 0, 1, 2, . . ., then for every bounded and τ -

continuous function f∫
X
f(x) dµn(x)→

∫
X
f(x) dµ0(x).

Symbolically: µn ⇒ µ0. In other words, convergence in law of random elements
is identified with ∗-weak convergence of their laws.

This approach if fully justified in metric spaces and the whole theory for
this case was perfectly described in classic books by Parthasarathy [18] and
Billingsley [1] (and many others). Fernique’s example shows, however, that
in non-metric spaces new phenomena occur. They might be interesting to
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mathematicians, but are rather useless in applications. In non-metric spaces
∗-weak convergence of distributions is too weak!

We shall define a stronger type of convergence in law of random elements
with values in submetric spaces and tight laws. This new notion will coincide
with the standard ∗-weak convergence of laws on metric spaces and spaces of
distributions like S ′ or D′.

The point is that within the frames of this new formalism the whole power
of the methods of metric theory is preserved. In particular, the Prohorov the-
orem and a version of the almost Skorokhod representation are available and
play a similar role. The introduced topology will be the finest in a natural
sense. Moreover, even in the metric case the new formalism brings a better
understanding of some results, e.g. for the converse Prohorov theorem.

In order to see that the new theory properly extends the previous one,
let us look at convergence in distribution on metric spaces from a specific
viewpoint.

Theorem 7.1. Let
(
X , ρ

)
be a metric space. The sequential topology τ(⇒)

on P
(
X , ρ

)
is the finest topology for which the standard maps

L0

(
Ω :
(
X , ρ

))
3 X 7→ P ◦X−1 ∈ P

(
X , ρ

)
are continuous, when L0

(
Ω :

(
X , ρ

))
is equipped with the metric topology of

the convergence in probability, e.g.

dP
(
X,Y

)
= Eρ(X,Y ) ∧ 1.

Definition 7.2. Let
(
X , τ

)
be a submetric space and P

(
X , τ

)
be the set

of τ -tight probability measures on X . Let µn ∈ P
(
X , τ

)
, n = 0, 1, 2, . . .. Say

that {µn} converges to µ0 via representation and write µn V µ0 if on some
probability space

(
Ω,F ,P

)
there exists a Skorokhod representation {Yj} for

{µn}, i.e. Yj ∼ µn, n = 0, 1, 2, . . . and Yn(ω)→ Y0(ω) P-almost surely.

Here is the main result of this section.

Theorem 7.3. Let
(
X , τ

)
be a submetric space and P

(
X , τ

)
be the set of

τ -tight probability measures on X . The sequential topology τ(V) on P
(
X , τ

)
is the finest topology, for which the standard maps

L0

(
Ω :
(
X , τ

))
3 X 7→ P ◦X−1 ∈ P

(
X , τ

)
are continuous, when L0

(
Ω :
(
X , ρ

))
is equipped with the sequential submetric

topology generated by the convergence −→P−τ .
In particular, if

(
X , ρ

)
is a metric space, then τ(V) and τ(⇒) coincide

on P
(
X , ρ

)
.
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Comments 7.4.
1. Kisyński’s recipe [15] allows finding the convergence

∗
V of laws in the

topology τ(V): µn
∗
V µ0 if, and only if, in every subsequence {µnk

} one
can find a further subsequence {µnkj

} with the Skorokhod representation:
µnkj

V µ0.
2. Our main Theorem 4.2 is, in fact, a theorem on relative compactness in the

topology τ(V) of uniformly τ -tight families of laws on (X , τ)!
3. It follows that the introduced notions are operational!
4. The idea of the convergence µn

∗
V µ0 goes back to [12].

We shall make the picture complete, if we show that also the space(
P
(
X , τ

)
, τ(V)

)
is submetric.

Let (X , τ) be a submetric space and let ρ be a metrics compatible with τ .
Let us consider the Prohorov metrics d(µ, ν) defined on P

(
X , τ) and given by

the formula

d(µ, ν) = inf{ε > 0 ; µ(A) ≤ ν(Aε) + ε, ν(A) ≤ µ(Aε) + ε, A− ρ-closed},

where Aε = {x ∈ X ; ρ(x,A) < ε}.
As shown in [19] the convergence with respect to Prohorov’s metrics is

equivalent to the ∗-weak convergence (with respect to ρ), which in turn is
weaker than the convergence in the topology τ(V). Hence

(
P
(
X , τ), τ(V)

)
is a submetric space!

In particular, conditional distributions or random measures on submetric
spaces can be considered as random elements in submetric spaces.

8. Genezis

Both the theorem on the Skorokhod representation in non-metric spaces
and the topology τ(V) were invented to create a formalism for using so called
topology S on the Skorokhod space D([0, 1]) (see [10], also [13]).

The topology S is sequential and it is (still) not known whether it is
completely regular. In 1994 no machinery existed to deal with it.

Presentation of the topology S as an application of the developed tech-
niques would require another lecture. Instead I would like to turn your atten-
tion to an interesting example of how to explore the topology S given in [6].
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