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ON TRANSCENDENTAL ENTIRE SOLUTION OF
FERMAT-TYPE TRINOMIAL AND BINOMIAL EQUATIONS

UNDER RESTRICTED HYPER-ORDER

Abhijit Banerjee∗, Jhuma Sarkar

Abstract. In this paper we are focusing on finding the transcendental entire
solution of Fermat-type trinomial and binomial equations, by restricting the
hyper-order to be less than one. As the hyper-order is a crucial parameter that
characterizes the growth of entire functions, it will be interesting to investigate
this unexplored domain, as far as practible, with certain restriction on hyper
order. Our results are the improvements of previous results reported in recent
papers [12], [13]. We have provided a series of examples to demonstrate and
validate the effectiveness of our proposed solutions.

1. Introduction

Fermat’s last theorem [16] states that for an integer n ≥ 3, there does
not exist any non-zero rational numbers x, y such that xn + yn = 1. Build-
ing upon this, Gross (see, [3, 4, 5]) extended the theorem to the complex
functional field by considering entire and meromorphic functions instead of
rational numbers and investigated the existence and forms of solutions in this
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context. Since then, numerous authors have further explored this topic, fo-
cusing on Fermat-type differential, difference, and difference-differential equa-
tions. They have utilized the logarithmic derivative lemma and its difference
analogue (see, [2, 7]) to establish the existence and form of transcendental
entire and meromorphic solutions.

Before stating the main content of the paper we assume that the readers
are familiar with the Nevanlinna theory [8, 9, 18] such as T (r, f), m(r, f),
N(r, f), N(r, 1f ), S(r, f), etc.

For a meromorphic function f(z) in C, we know that order is defined as

ρ(f) = lim sup
r−→∞

log T (r, f)

log r
,

hyper-order of f as

ρ2(f) = lim sup
r−→∞

log log T (r, f)

log r
.

By S(r, f) we will mean any quantity satisfying o(T (r, f)), r → ∞, outside
possibly an exceptional set of finite logarithmic measure.

In 2013 Liu-Yang [12] investigated the finite-order transcendental entire
solution of the following eqaution

f (k)(z)2 + f(z + c)2 = 1,(1.1)

and established the following result.

Theorem A ([12]). The transcendental entire solution with finite order of
the differential-difference equation (1.1) must satisfy the following two cases:
(i) if k is odd then f(z) = ∓ sin(Aiz +Bi) and c = kπi

A , Ak = ±i,
(ii) if k is even then f(z) = ± cos(Aiz +Bi) and c =

kπi+πi
2

A , Ak = ±1,
where B is a constant.

In 2013, Saleeby [14] conducted the initial investigation into the entire and
meromorphic solutions of Fermat-type quadratic trinomial equations. Actu-
ally, in the paper [14], Saleeby first studied Fermat-type trinomial equation of
the form

f2(z) + 2αf(z)g(z) + g2(z) = 1,(1.2)

and obtained the next result.
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Theorem B ([14]). Let α2 6= 0, 1, then the transcendental entire solution
of (1.2) must be of the form

f(z) =
1√
2

(
cos(h(z))√

1 + α
+

sin(h(z))√
1− α

)
, g(z) =

1√
2

(
cos(h(z))√

1 + α
− sin(h(z))√

1− α

)
,

where h(z) is an entire function in Cn. The meromorphic solution of (1.2)
must be of the form

f(z) =
α1 − α2β(z)2

(α1 − α2)β(z)
, g(z) =

1− β(z)2

(α1 − α2)β(z)
,

where β(z) is a meromorphic function in Cn and

α1 = −α+
√
α2 − 1, α2 = −α−

√
α2 − 1.

Saleeby’s initial work provided insights and information regarding the ex-
istence and properties of solutions to quadratic trinomial equations. Conse-
quently, it sparked significant interest among researchers and motivated fur-
ther study into different variations of Fermat-type quadratic trinomial equa-
tions. Building upon this foundation, researchers explored various aspects and
variants of Fermat-type quadratic trinomial equations. As a result, several pa-
pers have been published in the literature to expand and enhance the under-
standing of this field. Later in 2016, Liu-Yang [13] further studied on Fermat-
type trinomial equations involving derivative and shift operator and obtained
the following results.

Theorem C ([13]). If α2 6= ±1, 0, then the equation

f(z)2 + 2αf(z)f ′(z) + f ′(z)2 = 1,

has no transcendental meromorphic solution.

Theorem D ([13]). If α2 6= ±1, 0, then the finite order transcendental
entire solution of

f2(z) + 2αf(z)f(z + c) + f2(z + c) = 1,

must be of order equal to one.



Abhijit Banerjee, Jhuma Sarkar

2. Motivation, main results and examples

In the literature on Fermat-type trinomial and binomial equations, re-
searchers have primarily focused on finding transcendental entire solutions of
the equations provided in the previous section. We refer the readers to go
through the results in [10, 11, 13, 19] and the references therein to be ac-
quainted with various forms of such solutions and to acquire knowledge about
their properties.

However, it appears that most of the previous work has primarily consid-
ered solutions of finite order in the complex plane C. The case of solutions
with infinite order did not receive much attention.

In 2022 Zhang et al., [19] investigated and established the exact form
of finite order transcendental entire solutions of the following Fermat-type
trinomial equations:

f(z)2 + 2αf(z)∆cf(z) + ∆cf(z)
2

= eg(z),

f(z + c)2 + 2αf(z + c)∆cf(z) + ∆cf(z)
2

= eg(z),

f ′(z)2 + 2αf ′(z)∆cf(z) + ∆cf(z)
2

= eg(z),

where ∆cf(z) = f(z + c)− f(z) and g(z) is a non-constant polynomial in C.
Inspired by the results of [19], in this paper we aim to fill this gap by

investigating the forms of transcendental entire solution of hyper-order strictly
less than one for different variants of Fermat-type trinomial and binomial
equations. In our equations the left hand side will be more generalized than
that was considered in [19]. Actually, hyper-order is a concept that extends
the notion of order for entire functions and provides a more refined measure
of their growth. So by restricting the hyper-order to be strictly less than
one, we are literally interested in understanding the behavior of solutions
of different variants of Fermat-type trinomial and binomial equations that
exhibit higher growth than typical entire functions. This investigation can
provide valuable insights into the nature and properties of solutions with
infinite order and definitely shed light on the previously unexplored case of
solutions with hyper-order less than one to contribute a more comprehensive
understanding of Fermat-type trinomial and binomial equations.

We consider the following equations:

(2.1) {a1f(z) + a2f(z + c)}2

+ 2α{a1f(z) + a2f(z+ c)}{b1f(z) + b2f(z+ c)}{b1f(z) + b2f(z+ c)}2 = 1,
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(2.2) {a0f (k)(z) + a2f(z + c)}2

+2α{a0f (k)(z)+a2f(z+c)}{b0f (k)(z)+b2f(z+c)}{b0f (k)(z)+b2f(z+c)}2 = 1,

where α2 6= 0, 1, a0, b0, a1, a2, b1, b2, c are non-zero constants in C.
Henceforth, we will use the following notations

Dt = atb2 − bta2,

where t = 0, 1 and

A1 =
1

2
√

1 + α
− i

2
√

1− α
, A2 =

1

2
√

1 + α
+

i

2
√

1− α
.

Theorem 2.1. Let D1 6= 0, α2 6= 0, 1, c 6= 0 be constants in C. Also let
f(z) be a non-constant transcendental entire solution of (2.1) with ρ2(f) < 1.
Then f(z) has the following form

f(z) =
1√
2D1

[(b2A1 − a2A2)ei(az+b) + (b2A2 − a2A1)e−i(az+b)],

such that

(a1A1 − b1A2)(a1A2 − b1A1) = (b2A2 − a2A1)(b2A1 − a2A2),

and

eiac =
a1A2 − b1A1

b2A1 − a2A2
, e−iac =

a1A1 − b1A2

b2A2 − a2A1
.

The next example justifies Theorem 2.1.

Example 2.1. Let a = 1, b = 2, α = 1
2 , a1 = 1, a2 = −2, b1 = −2, b2 = 1.

Then

f(z) =
1

6
[−(
√

3 + i)eiz+2i − (
√

3− i)e−iz−2i],

is a solution of (2.1), where c satisfies the condition defined in Theorem 2.1.

The next example shows that the condition ρ2(f) < 1 is sharp for Theo-
rem 2.1.
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Example 2.2. Let α = 1
2 , a1 = 1, a2 = −2, b1 = −2, b2 = 1, c be a

constant such that eic = A2+2A1

A1+2A2
. Here

f(z) = − 1

3
√

2
[(A1 + 2A2)ee

iz

+ (A2 + 2A1)ee
−iz

],

is not a solution of Theorem 2.1 and ρ2(f) = 1.

Theorem 2.2. Let D0 6= 0, α2 6= 0, 1, c 6= 0 be constants in C. Also let
f(z) be a non-constant transcendental entire solution of (2.2) with ρ2(f) < 1.
Then f(z) has the following form

f(z) =
1√
2D0

[
(b2A1 − a2A2)

ikak
ei(az+b) +

(b2A2 − a2A1)

(−i)kak
e−i(az+b)

]
,

such that

a2k(a0A2 − b0A1)(a0A1 − b0A2) = (b2A1 − a2A2)(b2A2 − a2A1),

and
eiac =

ikak(a0A2 − b0A1)

b2A1 − a2A2
, e−iac =

(−i)kak(a0A1 − b0A2)

b2A2 − a2A1
.

The next two examples show that the conclusion of Theorem 2.2 is precise.

Example 2.3. Let α = 1
2 , a0 = 1, a2 = 2, b0 = 2, b2 = 1, a = 1, b = 0,

k = 2. Then

f(z) =
1

6
√

3
[−(1 + i3

√
3)eiz − (1− i3

√
3)e−iz],

is a solution of (2.2), where c satisfies the condition defined in Theorem 2.2.

Example 2.4. Let α = 1
2 , a0 = 1, a2 = −2, b0 = −2, b2 = 1, a = 1, b = 0,

k = 1. Then

f(z) =
1

6i
[−(
√

3 + i)eiz + (
√

3− i)e−iz],

is a solution of equation (2.2), where c satisfies the condition defined in The-
orem 2.2.

The next example shows that the condition ρ2(f) < 1 is sharp for Theo-
rem 2.2.
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Example 2.5. Let α = 1
2 , a0 = 1, a2 = 2, b0 = 2, b2 = 1, a = 1, b = 0,

k = 2, c be a constant such that eic = i(A2−2A1)
A1−2A2

. Here

f(z) =
1

6
√

3
[−(1 + i3

√
3)ee

iz

− (1− i3
√

3)ee
−iz

],

is not a solution of (2.2) and ρ2(f) = 1.

If α = 0 in (2.1) and (2.2) simply reduced to the corresponding binomial
equations

{a1f(z) + a2f(z + c)}2 + {b1f(z) + b2f(z + c)}2 = 1,(2.3)

and

{a0f (k)(z) + a2f(z + c)}2 + {b0f (k)(z) + b2f(z + c)}2 = 1,(2.4)

respectively. In the context of (2.3) and (2.4), it will be interesting to investi-
gate the analogous results of Theorems 2.1 and 2.2. So we have the following
two theorems.

Theorem 2.3. Let D1 6= 0, b2 6= ±ia2, α2 6= 0, 1, c 6= 0 be constants in
C. Also let f(z) be a non-constant transcendental entire solution of (2.3) with
ρ2(f) < 1. Then f(z) has the following form

f(z) =
1

2D1

[
(b2 + ia2)eaz+b + (b2 − ia2)e−az−b

]
,

where a 6= 0, b are two constants in C such that

a21 + b21 = a22 + b22

and
eac =

b1 + ia1
b2 + ia2

, e−ac =
b1 − ia1
b2 − ia2

.

The next example justifies Theorem 2.3.

Example 2.6. Let a1 = 1, a2 = 1, b1 = 1, b2 = −1, a = 1, b = 1, c = −πi2 .
Then

f(z) =
1− i

4
[ez+1 + e−z−1],

is a solution of (2.3).
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Theorem 2.4. Let D0 6= 0, b2 6= ±ia2, α2 6= 0, 1, c 6= 0 be constants in
C. Also let f(z) be a non-constant transcendental entire solution of (2.4) with
ρ2(f) < 1. Then f(z) has the following form

f(z) =
1

2D0

[
b2 + ia2
ak

eaz+b +
b2 − ia2
(−1)kak

e−az−b
]

such that

(−1)ka2k(a20 + b20) = a22 + b22

and

eiac = −a
k(b0 + ia0)

b2 + ia2
, e−iac =

(−1)k+1ak(b0 − ia0)

b2 − ia2
,

a 6= 0, b are two constants in C.

Corollary 2.1.

(i) When k is odd, then we have

f(z) =
1

2D0ak
[
(b2 + ia2)eaz+b − (b2 − ia2)e−az−b

]
,

such that a22 + b22 = −a2k(a20 + b20).
(ii) When k is even, then we have

f(z) =
1

2D0ak
[
(b2 + ia2)eaz+b + (b2 − ia2)e−az−b

]
,

such that a22 + b22 = a2k(a20 + b20).

The next example justifies Theorem 2.4.

Example 2.7. Let k = 2, a0 = 1, b0 = −1, a2 = 1, b2 = 1, a = 1, b = 0,
c = −πi2 . Then

f(z) =
1

4

[
(1 + i)ez + (1− i)e−z

]
,

is a solution of the equation (2.4).
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The next example justifies the sharpness of the condition of ρ2(f) < 1 in
Theorem 2.4.

Example 2.8. Let k = 1, a0 = 1, b0 = 1, a2 = −1, b2 = 1, a = i, b = 0,
c = 2πi but

f(z) =
1

4i
[(1− i)ee

iz

− (1 + i)ee
−iz

],

is not a solution of (2.4). Clearly ρ2(f) = 1.

3. Lemmas

Lemma 3.1 ([15]). Consider an entire function F in Cn, F (0) 6= 0 and
put ρ(nF ) = ρ <∞. Then there exists a canonical function fF and a function
gF ∈ Cn such that F (z) = fF (z)e

gF (z) . For special case n = 1, fF is the
canonical product of Weierstrass. Here ρ(nf ) denotes the order of the counting
function of zeros of F .

Lemma 3.2 ([1]). Let g be a transcendental meromorphic function of order
less than one and h1 be a positive constant. Then there exists an ε-set E such
that C\{E} � z →∞, one has

g′(z + ζ)

g(z + ζ)
→ 0,

g(z + ζ)

g(z)
→ 1,

uniformly in ζ for |ζ| ≤ h1. Further, the ε-set E may be chosen such that for
large z not in E, the function g has no zeros or poles in |ζ − z| ≤ h1.

Lemma 3.3 ([17]). If f is a non-constant periodic meromorphic function,
then ρ(f) ≥ 1.

Lemma 3.4 ([17]). If h is non-constant entire function, then ρ2(eh) = ρ(h).

Lemma 3.5 ([6]). Let aj(z) be entire functions of finite order ρ and gj(z)
be entire functions such that gk(z) − gj(z), j 6= k are transcendental entire
functions or polynomials of degree greater than ρ. Then

n∑
j=1

aj(z)e
gj(z) = a0(z),

holds only when a0(z) = a1(z) = a2(z) = · · · = an(z) ≡ 0.
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4. Proofs of the theorems

Proof of Theorem 2.1. Let f(z) be a non-constant transcendental en-
tire solution of (2.1) with ρ2(f) < 1. Then using Theorem B we have

a1f(z) + a2f(z + c) =
1√
2

(
cos(h(z))√

1 + α
+

sin(h(z))√
1− α

)
(4.1)

=
1√
2

(
A1e

ih(z) +A2e
−ih(z)

)
,

b1f(z) + b2f(z + c) =
1√
2

(
cos(h(z))√

1 + α
− sin(h(z))√

1− α

)
(4.2)

=
1√
2

(
A2e

ih(z) +A1e
−ih(z)

)
,

where h(z) is a non-constant entire function. From (4.1) and (4.2) we have

f(z) =
1√
2D1

[(b2A1 − a2A2)eih(z) + (b2A2 − a2A1)e−ih(z)],(4.3)

f(z + c) = − 1√
2D1

[(b1A1 − a1A2)eih(z) + (b1A2 − a1A1)e−ih(z)].(4.4)

We have from (4.3)

T (r, f(z)) = 2T (r, eih(z)) + S(r, f).(4.5)

Since ρ2(f) < 1, using Lemma 3.4 from (4.5) we obtain ρ2(f) = ρ(h) < 1, i.e.,
h(z) is a non-constant entire function of order less than one.

Using (4.3) and (4.4) we have

(4.6) (b2A1 − a2A2)eih(z+c) + (b2A2 − a2A1)e−ih(z+c)

= (a1A2 − b1A1)eih(z) + (a1A1 − b1A2)e−ih(z).

Now we claim that all four terms namely b2A1 − a2A2, b2A2 − a2A1, a1A2 −
b1A1, a1A1 − b1A2 in (4.6) are non-zero. Now we discuss the following cases:

Case 1: Without any loss of generality let us assume that a1A1−b1A2 = 0.
Since a1A1 − b1A2 = 0 then from (4.6) clearly we have a1A2 − b1A1 6= 0,
otherwise we will have A2

1 = A2
2, which contradicts our assumption α2 6= 0, 1.

Under the condition a1A1−b1A2 = 0 we also have b2A2−a2A1 6= 0, otherwise
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from this two expression we have D1 = a1b2−a2b1 = 0, which contradicts our
assumption.

Subcase 1.1: If b2A1 − a2A2 = 0, from (4.6) we will have

(b2A2 − a2A1)e−ih(z+c)−ih(z) = (a1A2 − b1A1).(4.7)

Then (4.7) shows that −i(h(z+ c) + h(z)) must be a constant. Now we claim
that h(z) can not be a non-constant polynomial, if so, comparing degree of h(z)
we have 0 =degree[−i(h(z+ c) + h(z))]=degree of 2h(z) ≥ 1, a contradiction.
If h(z) is a non-constant transcendental entire function then differentiating
we have h′(z + c) = −h′(z) and using Lemma 3.2 we have 1 ≡ h′(z+c)

h′(z) → −1,
which is a contradiction.

Subcase 1.2: Let b2A1 − a2A2 6= 0, b2A2 − a2A1 6= 0, a1A2 − b1A1 6= 0,
a1A1 − b1A2 = 0. Then from (4.6) we have

(4.8) (b2A1 − a2A2)eih(z+c)−ih(z) + (b2A2 − a2A1)e−ih(z+c)−ih(z)

= (a1A2 − b1A1).

Now using Nevanlinna Second Fundamental theorem from (4.8) we have

T
(
r, e−ih(z+c)−ih(z)

)
≤ N

(
r,

1

e−ih(z+c)−ih(z)

)
+N

(
r,

1

e−ih(z+c)−ih(z) − β

)
+N

(
r, e−ih(z+c)−ih(z)

)
+ S

(
r, e−ih(z+c)−ih(z)

)
≤ N

(
r,

1
b2A1−a2A2

b2A2−a2A1
eih(z+c)−ih(z)

)
+ S

(
r, e−ih(z+c)−ih(z)

)
= o

(
T
(
r, e−ih(z+c)−ih(z)

))
,

where β = a1A2−b1A1

b2A2−a2A1
6= 0, which shows that −i(h(z+ c) +h(z)) is a constant.

Then from (4.8) we must have i(h(z + c)− h(z)) must be a non constant.
Then we have

(b2A1 − a2A2)eih(z+c)−ih(z) + (b2A2 − a2A1)K1 = (a1A2 − b1A1),

where K1 = e−ih(z+c)−ih(z). Considering order of growth in both sides we get
a contradiction. Hence a1A1 − b1A2 6= 0.

Case 2: Using similar arguments as done in Case 1 we can show that
b2A1 − a2A2 6= 0, b2A2 − a2A1 6= 0, a1A2 − b1A1 6= 0.

Since h(z) is a non-constant entire function and b2A1 − a2A2 6= 0, b2A2 −
a2A1 6= 0, a1A2−b1A1 6= 0, a1A1−b1A2 6= 0 then using Lemma 3.5 from (4.6)
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we have either ih(z + c) + ih(z) or −ih(z + c) + ih(z) is a constant. If ih(z +
c) + ih(z) is a constant then using similar arguments as done in Subcase 1.1
we clearly have a contradiction. Hence −ih(z+ c) + ih(z) must be a constant.
Differentiating we have h′(z+c) = h′(z), i.e., h′(z) is a periodic entire function.
We have ρ(h) = ρ(h′). Since after (4.5) we have already deducted ρ(h) < 1,
using Lemma 3.3 we derive that h′ is constant in C, say h′(z) = a, a 6= 0, i.e.,
h(z) = az + b, b is a constant.

Now using (4.3) and (4.4) we have

f(z) =
1√
2D

[(b2A1 − a2A2)ei(az+b) + (b2A2 − a2A1)e−i(az+b)],

eiac =
a1A2 − b1A1

b2A1 − a2A2
, e−iac =

a1A1 − b1A2

b2A2 − a2A1
.

This proves the conclusion of Theorem 2.1. �

Proof of Theorem 2.2. Let f(z) be a non-constant transcendental en-
tire solution of (2.2) with ρ2(f) < 1. Using Theorem B we have

a0f
(k)(z) + a2f(z + c) =

1√
2

[A1e
ih(z) +A2e

−ih(z)],(4.9)

b0f
(k)(z) + b2f(z + c) =

1√
2

[A2e
ih(z) +A1e

−ih(z)],(4.10)

where h(z) is a non-constant entire function. Then from (4.9) and (4.10) we
have

f (k)(z) =
1√
2D0

[(b2A1 − a2A2)eih(z) + (b2A2 − a2A1)e−ih(z)],(4.11)

f(z + c) = − 1√
2D0

[(b0A1 − a0A2)eih(z) + (b0A2 − a0A1)e−ih(z)].(4.12)

Differentiating (4.12) k-times we get

(4.13) f (k)(z + c)

=
1√
2D0

[(a0A2 − b0A1)M(z)eih(z) + (a0A1 − b0A2)N(z)e−ih(z)],

where M(z) = ih(k)(z) + · · ·+ ik(h′)k, N(z) = −ih(k)(z) + · · ·+ (−i)k(h′)k.
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Using (4.11) and (4.13) we have

(4.14) (b2A1 − a2A2)eih(z+c) + (b2A2 − a2A1)e−ih(z+c)

= (a0A2 − b0A1)M(z)eih(z) + (a0A1 − b0A2)N(z)e−ih(z).

Now we claim that both b2A1 − a2A2 6= 0 and b2A2 − a2A1 6= 0.
Without any loss of generality let b2A2 − a2A1 = 0, then from (4.14) we

have b2A1 − a2A2 6= 0 and a0A1 − b0A2 6= 0. Otherwise b2A2 − a2A1 = 0 and
b2A1 − a2A2 = 0 implies A2

1 = A2
2, which contradicts the assumption that

α2 6= 0, 1; b2A2 − a2A1 = 0 and a0A1 − b0A2 = 0 contradicts our assumption
D0 = a0b2 − b0a2 6= 0.

Then (4.14) reduces to

(4.15) (b2A1 − a2A2)eih(z+c) + (b0A1 − a0A2)M(z)eih(z)

= (a0A1 − b0A2)N(z)e−ih(z)

Let us discuss the following possibilities regarding the equation (4.15):
Case i): Let M(z) ≡ 0 and N(z) ≡ 0 then from (4.15) we have

(b2A1 − a2A2)eih(z+c) ≡ 0,

since b2A1 − a2A2 6= 0, ih(z + c) must be a constant i.e., h(z) is a constant,
which is a contradiction.

Case ii): Let M(z) ≡ 0 and N(z) 6≡ 0 then from (4.15) we have

(b2A1 − a2A2)ei(h(z+c)+h(z)) ≡ (a0A1 − b0A2)N(z).(4.16)

Then (4.16) implies that i(h(z + c) + h(z)) must be a constant. Then using
similar arguments as done in Subcase 1.1 of Theorem 2.1 we must have a
contradiction.

Case iii): Let M(z) 6≡ 0 and N(z) ≡ 0 then from (4.15) we have

(b2A1 − a2A2)eih(z+c) + (b0A1 − a0A2)M(z)eih(z) ≡ 0.

If (b0A1 − a0A2) = 0, then we get a contradiction. If (b0A1 − a0A2) 6= 0,
then we get i(h(z + c) − h(z)) is a constant. Then differentiating we have
h′(z + c) = h′(z). As h′(z) is a periodic entire function with period c and
we know ρ(h) < 1, in view of Lemma 3.3 we have h′(z) is a constant, say
a(6= 0). Then we have h(z) = az + b, b ∈ C is a constant. Then we have
M(z) = ikak, andN(z) = (−i)k(a)k, which clearly contradicts our assumption
under Case iii).
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Case iv): Let M(z) 6≡ 0 and N(z) 6≡ 0. If b0A1− a0A2 = 0 in (4.15), then
using similar arguments as done in the proof of Subcase 1.1 in Theorem 2.1
we get a contradiction. If b0A1 − a0A2 6= 0, then using Nevanlinna Second
Fundamental theorem from (4.15) we have

T
(
r, ei(h(z+c)+h(z))

)
≤ N

(
r,

1

ei(h(z+c)+h(z))

)
+N

(
r,

1

ei(h(z+c)+h(z)) − δ

)
+N

(
r, ei(h(z+c)+h(z))

)
+ S

(
r, ei(h(z+c)+h(z))

)
≤ N

(
r,

1
(b0A1−a0A2)M(z)

b2A1−a2A2
e2i(h(z))

)

+ S
(
r, ei(h(z+c)+h(z))

)
= o

(
T
(
r, ei(h(z+c)+h(z))

))
where δ = (a0A1−b0A2)N(z)

b2A1−a2A2
, which shows that i(h(z + c) + h(z)) is a constant.

Then form (4.15) we must have

(b2A1 − a2A2)K2 + (b0A1 − a0A2)M(z)e2ih(z) = (a0A1 − b0A2)N(z),

where K2 = ei(h(z+c)+h(z)). Considering order of growth in both sides we
clearly get a contradiction. Hence we get b2A2 − a2A1 6= 0.

Similarly we can show that b2A1 − a2A2 6= 0.
Now we discuss the following cases regarding the equation (4.14) when

both b2A2 − a2A1 6= 0 and b2A1 − a2A2 6= 0:
Case 1: (a0A2 − b0A1)M(z) ≡ 0, (a0A1 − b0A2)N(z) ≡ 0. Then from

(4.14) we get a contradiction about the fact that h(z) is a non-constant entire
function.

Case 2: (a0A2 − b0A1)M(z) ≡ 0, (a0A1 − b0A2)N(z) 6≡ 0. Then from
(4.14) we have

(4.17) (b2A1 − a2A2)eih(z+c) + (b2A2 − a2A1)e−ih(z+c)

= (a0A1 − b0A2)N(z)e−ih(z).

Then using Lemma 3.5 we get either i(h(z+ c) +h(z)) or, i(−h(z+ c) +h(z))
is a constant. Now if i(h(z + c) + h(z)) is a constant, then using similar
arguments as done in Subcase 1.1 of Theorem 2.1 we get a contradiction. If
i(−h(z+ c)+h(z)) is a constant, but i(h(z+ c)+h(z)) is not a constant, then
we have from (4.17)

(b2A1 − a2A2)ei(h(z+c)+h(z)) + (b2A2 − a2A1)K3 = (a0A1 − b0A2)N(z),
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where K3 = ei(h(z)−h(z+c)). Now comparing the order of growth in both sides
we clearly get a contradiction.

Case 3: (a0A2 − b0A1)M(z) 6≡ 0, (a0A1 − b0A2)N(z) ≡ 0. Then using
similar arguments as done in Case 2 we get a contradiction.

Case 4: (a0A2 − b0A1)M(z) 6≡ 0, (a0A1 − b0A2)N(z) 6≡ 0. Then from
(4.14) we have either i(h(z) + h(z + c)) or i(h(z)− h(z + c)) is a constant. If
i(h(z) + h(z + c)) is a constant, then we get a contradiction. Then we must
have i(h(z) − h(z + c)) is a constant. Then using similar analysis as done in
Case iii) we have h(z) = az + b, a 6= 0, b ∈ C are constants. Then from (4.12)
we have

(4.18) f (k)(z) =
1√
2D0

[
(b2A1 − a2A2)ei(az+b) + (b2A2 − a2A1)e−i(az+b)

]
.

Integrating k-times from (4.18) we get

(4.19) f(z) =
1√
2D0

[
(b2A1 − a2A2)

ikak
ei(az+b) +

(b2A2 − a2A1)

(−i)kak
e−i(az+b)

]
+ S(z),

where S(z) is a polynomial in C of degree k − 1. Since S(z) is an arbitrary
polynomial, using equation (2.2) we get S(z) ≡ 0.

From (4.19) and (4.12) we have

eiac =
ikak(a0A2 − b0A1)

b2A1 − a2A2
, e−iac =

(−i)kak(a0A1 − b0A2)

b2A2 − a2A1
. �

Proof of Theorem 2.4. Let f(z) be a transcendental entire solution of
(2.4) with ρ2(f) < 1. Then using Lemma 3.1 we have

a0f
(k)(z) + a2f(z + c) =

eh(z) + e−h(z)

2
,(4.20)

b0f
(k)(z) + b2f(z + c) =

eh(z) − e−h(z)

2i
,(4.21)

where h(z) is a non-constant entire function. Then from (4.20) and (4.21) we
have

f (k)(z) =
(b2 + ia2)eh(z) + (b2 − ia2)e−h(z)

2D0
,(4.22)

f(z + c) =
(b0 + ia0)eh(z) + (b0 − ia0)e−h(z)

−2D0
.(4.23)
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Differentiating (4.23) k-times we get

f (k)(z + c) =
(b0 + ia0)M1(z)eh(z) + (b0 − ia0)N1(z)e−h(z)

−2D0
,(4.24)

where M1(z) = [h(k)(z) + · · · + (h′(z))k] and N1(z) = [−h(k)(z) + · · · +
(−1)k(h′)k]. Using (4.23) we have

T (r, f(z + c)) = T (r, e2h(z)) + S(r, f).

Therefore, T (r, f(z + c)) = T (r, f(z)) + S(r, f) and ρ2(f) < 1. Then clearly
we have ρ(h) = ρ2(f) < 1.

Now using (4.22) and (4.24) we have

(4.25) (b2 + ia2)eh(z+c) + (b2 − ia2)e−h(z+c)

= −(b0 + ia0)M1(z)eh(z) − (b0 − ia0)N1(z)e−h(z).

Clearly we have b2 + ia2 6= 0 and b2 − ia2 6= 0.
Now we discuss the following cases:
Case 1: Let both (b0 + ia0)M1(z) ≡ 0 and (b0− ia0)N1(z) ≡ 0. Then from

(4.25) we have h(z) is a constant entire function, which is a contradiction.
Case 2: Let (b0 + ia0)M1(z) ≡ 0 and (b0 − ia0)N1(z) 6≡ 0. Then from

(4.25) we have

(b2 + ia2)eh(z+c) + (b2 − ia2)e−h(z+c) = −(b0 − ia0)N1(z)e−h(z).

Using Lemma 3.5 we have either h(z+c)+h(z) or −h(z+c)+h(z) is a constant.
Then using same arguments as done in the proof of case 2 of Theorem 2.2 we
get a contradiction.

Case 3: Let (b0 + ia0)M1(z) 6≡ 0 and (b0 − ia0)N1(z) ≡ 0. Then using
same arguments as done in the proof of Case 2 of Theorem 2.2 we get a
contradiction.

Case 4: Let (b0+ia0)M1(z) 6≡ 0 and (b0−ia0)N1(z) 6≡ 0. Then from (4.25)
we have either h(z+c)+h(z) or −h(z+c)+h(z) is a constant. If h(z+c)+h(z)
is a constant then using similar arguments as done in the proof of Subcase 1.1
of Theorem 2.1 we must have a contradiction. If −h(z+c)+h(z) is a constant
then using same arguments as done in the proof of Case iii) of Theorem 2.2
we must have h(z) = az + b, where a 6= 0 and b are two constants in C.

From (4.22), integrating f (k)(z) k-times we get

f(z) =
1

2D0

[
b2 + ia2
ak

eaz+b +
b2 − ia2
(−a)k

e−az+b
]

+ S1(z),
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where S1(z) is a polynomial of degree k − 1. Since S1(z) is arbitrary we take
S1(z) ≡ 0. Then from (4.22) and (4.24) we have

eiac =
−ak(b0 + ia0)

b2 + ia2
, e−iac =

(−1)k+1ak(b0 − ia0)

b2 − ia2
. �

Proof of Theorem 2.3. We omit the proof of Theorem 2.3 as the proof
is similar to that of Theorem 2.4. �

5. Two open questions

1. What will be the possible form of transcendental entire solution of hyper-
order strictly less than one of the equations (2.1)–(2.4) when the right hand
side is replaced by eg(z), where g(z) is a non-constant polynomial in C?

2. Is it possible to extend the theorems obtained in this paper to Cn?
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