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GENERALIZED POLYNOMIALS ON SEMIGROUPS

Bruce Ebanks

This paper is dedicated to Kazimierz Nikodem on the occasion of his 70th birthday

Abstract. This article has two main parts. In the first part we show that
some of the basic theory of generalized polynomials on commutative semi-
groups can be extended to all semigroups. In the second part we show that if
a sub-semigroup S of a group G generates G in the sense that G = S · S−1,
then a generalized polynomial on S with values in an Abelian group H can
be extended to a generalized polynomial on G into H. Finally there is a short
discussion of the extendability of exponential functions and generalized expo-
nential polynomials.

1. Introduction

Although there is an extensive literature about generalized polynomials
on groups (see [2], [5], and their references) and commutative semigroups
(see [4] and [8, sec.1-2]), it seems that very little attention has been given
to non-commutative semigroups. The only instance we can find is [7], which
treats generalized polynomials mapping a semigroup S satisfying the condi-
tion gS = Sg for all g ∈ S into a uniquely divisible Abelian group. We will
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show in section 2 that some of the basic theory about generalized polynomials
(including the binomial theorem, the polarization formula, and the canonical
representation) holds on an arbitrary semigroup if the co-domain is commu-
tative.

Section 3 deals with the extendability of generalized polynomials. We show
that if a sub-semigroup S of a group G generates G in the sense that G =
S · S−1, then every generalized polynomial mapping S into an Abelian group
H can be extended to a generalized polynomial from G into H. This part of
the paper is based on results of Aczél, Baker, et al. [1] concerning extensions
of homomorphisms; their results do not require G to be commutative.

A short final section discusses the extendability of exponentials and gen-
eralized exponential polynomials on semigroups.

Throughout the article S, T denote semigroups and G,H denote groups.
We use multiplicative notation (x, y) 7→ xy for the binary operation in the
domain (S or G) of our functions, where commutativity is not assumed. In the
co-domain (T or H) we use additive notation (x, y) 7→ x+ y or multiplicative
notation depending on whether or not the binary operation is assumed to be
commutative. In an Abelian group let 0 denote the identity element.

Let N denote the set of positive integers and N0 := N∪ {0}. For n ∈ N let
Sn := S × · · · × S denote the n-fold direct product. A function h : Sn → T
is said to be an n-homomorphism (or in general a multi-homomorphism) if it
is a homomorphism of S into T in each variable. We extend this definition to
include n = 0 by defining S0 := S and the 0-homomorphisms of S into T to
be the constant functions.

If T is a commutative semigroup we use the terminology n-additive func-
tion for an n-homomorphism of Sn into T .

2. Generalized polynomials

Let S be a semigroup and T a commutative semigroup. For j ∈ N0 a func-
tion f : S → T is a generalized monomial of degree j if there exists a j-additive
function F : Sj → T such that f(x) = F (x, . . . , x) for all x ∈ S. Note that
such f is homogeneous of degree j in the sense that for each k ∈ N and x ∈ S
we have f(xk) = kjf(x).

For n ∈ N0 a generalized polynomial of degree at most n is a function
f : S → T of the form

f =
n∑
j=0

fj ,(2.1)
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where fj : S → T is a generalized monomial of degree j for each j ∈ {0, . . . , n}.
Such f has degree n if and only if fn 6= 0.

For an additive function A : S → T we observe that A(xy) = A(x)+A(y) =
A(y) + A(x) = A(yx) for all x, y ∈ S, even though xy and yx may differ. In
fact additive and multi-additive functions have a stronger property following
from the commutativity of T . We say that a function φ on S is Abelian if
φ(x1 · · ·xn) = φ(xπ(1) · · ·xπ(n)) for all n ∈ N, all x1, . . . , xn ∈ S, and all
permutations π on the set {1, . . . , n}. Every k-additive function A : Sk → T
is Abelian in each variable, since

A(s1, . . . , sj−1,xπ(1) · · ·xπ(n), sj , . . . , sk−1)

=

n∑
i=1

A(s1, . . . , sj−1, xπ(i), sj , . . . , sk−1)

=

n∑
i=1

A(s1, . . . , sj−1, xi, sj , . . . , sk−1)

= A(s1, . . . , sj−1, x1 · · ·xn, sj , . . . , sk−1)

for all n ∈ N, s1, . . . , sk−1, x1, . . . , xn ∈ S, and j = 1, . . . , k. This property
of multi-additive functions allows us to extend several standard results about
generalized polynomials on commutative semigroups to arbitrary semigroups.
We do this now for some well-known properties of multi-additive functions
and generalized polynomials tracing back to Djoković [4].

For n ∈ N0 let An(S, T ) denote the commutative semigroup of all n-
additive functions from Sn into T , so in particular A1(S, T ) = Hom(S, T ) is
the semigroup of all homomorphisms of S into T . For any φ ∈ An(S, T ) define
φ∗ : S → T (sometimes called the diagonalization of φ) by

φ∗(x) := φ(x, . . . , x), x ∈ S.

We abbreviate the right hand side of the preceding equation as φ([x]n).
For any n∈N0 a function ψ on Sn is said to be symmetric if ψ(x1, . . . , xn)=

ψ(xπ(1), . . . , xπ(n)) for all x1, . . . , xn ∈ S and all permutations π on the set
{1, . . . , n} (in the case n = 0 every function is trivially symmetric). Let
Ansym(S, T ) denote the sub-semigroup of all symmetric functions belonging
to An(S, T ). For any ψ ∈ Ansym(S, T ) and any x, y ∈ S let ψ([x]k, [y]n−k)
stand for the value of ψ at any n-tuple in which k entries are x and n− k en-
tries are y. Note that if H is an Abelian group then An(S,H) and Ansym(S,H)
are also Abelian groups.
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If H is an Abelian group let HS denote the set of functions mapping S
into H. For each y ∈ S let ∆y : HS → HS denote the right-difference operator
defined by

∆yφ(x) := φ(xy)− φ(x) for all x ∈ S, φ ∈ HS .

For compositions of such operators define

∆y1,...,yk := ∆y1 ◦ · · · ◦∆yk for y1, . . . , yk ∈ S,

∆k
y := ∆y,...,y for y ∈ S, k ∈ N.

A common condition used to define a generalized polynomial f of degree at
most n from a semigroup into an Abelian group is

∆y1,...,yn+1f = 0 for all y1, . . . , yn+1 ∈ S.

Clearly such a definition cannot be used when the co-domain is not a group,
since the difference operators cannot be defined.

The results below extend standard results on commutative semigroups,
as found for example in Szekelyhidi’s monograph [8], to all semigroups. We
make the extensions by replacing the assumption of commutativity in S by
the property that multi-additive functions are Abelian in each variable. Where
the proof is essentially the same as in [8] we do not include it here. The first
result is a binomial theorem for multi-additive symmetric functions (cf. [8,
Lemma 1.2]).

Lemma 2.1. Let S be a semigroup, T a commutative semigroup, n ∈ N0,
and ψ ∈ Ansym(S, T ). Then

ψ∗(xy) =

n∑
j=0

(
n

j

)
ψ([x]j , [y]n−j), x, y ∈ S.

Next is the polarization formula for symmetric multi-additive functions
(cf. [8, Lemma 1.4]).

Lemma 2.2. Let S be a semigroup, H an Abelian group, n ∈ N0, and
ψ ∈ Ansym(S,H). Then for all y1 . . . , yk ∈ S we have

∆y1,...,ykψ
∗ =

{
0 for k > n,

n!ψ(y1, . . . , yn) for k = n.
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The following corollary is immediate.

Corollary 2.3. Let S be a semigroup, H an Abelian group, n ∈ N0, and
ψ ∈ Ansym(S,H). Then

∆n
yψ

∗ = n!ψ∗(y), y ∈ S.

A semigroup S is said to be divisible by k ∈ N if for every y ∈ S there
exists x ∈ S such that xk = y, and S is uniquely divisible by k if such x is
unique for each y. The next result is an extension of [8, Lemma 1.6].

Lemma 2.4. Let S be a semigroup, H an Abelian group, n ∈ N, and
ψ ∈ Ansym(S,H). Furthermore suppose that either S is divisible by n! or mul-
tiplication by n! is injective in H. Then ψ∗ = 0 only if ψ = 0.

Next we discuss the uniqueness of homogeneous terms of each degree.

Lemma 2.5. Let S be a semigroup, H an Abelian group, n ∈ N0, and
suppose the functions hj ∈ Ajsym(S,H) for 0 ≤ j ≤ n satisfy

n∑
j=0

h∗j = 0.(2.2)

If either S is divisible by n! or multiplication by n! is injective in H, then
h∗j = 0 for each j ∈ {0, . . . , n}.

Proof. We prove the statement by induction on n. It is obvious for n = 0.
For n = 1 we have 0 = h∗0 + h∗1 = h0 + h1. Thus for all x, y ∈ S we have

0 = h0 + h1(xy) = h0 + h1(x) + h1(y) = h1(y),

so 0 = h1 = h∗1 and therefore 0 = h0 = h∗0.
Now suppose that for some N ≥ 2 the statement is true for all 0 ≤ n < N ,

and let

N∑
j=0

h∗j = 0.(2.3)

By the binomial theorem (Lemma 2.1) we get for all x, y ∈ S that

0 =

N∑
j=0

h∗j (xy) =

N∑
j=0

j∑
k=0

(
j

k

)
hj([x]k, [y]j−k).
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Thus we have

0 =

N∑
j=0

[h∗j (xy)− h∗j (x)− h∗j (y)](2.4)

= −h0 +

N∑
j=2

j−1∑
k=1

(
j

k

)
hj([x]k, [y]j−k).

For each fixed y ∈ S, j ∈ {2, . . . , N}, and k ∈ {1, . . . , j − 1}, we see that

x 7→ hj([x]k, [y]j−k) ∈ Aksym(S,H).

Therefore we can view (2.4) as an equation of the form (2.2) in terms of x for
each fixed y. Moreover the highest degree (in x) homogeneous term of (2.4)
is NhN ([x]N−1, y), which has degree N − 1. By the inductive hypothesis each
homogenous term of (2.4) vanishes identically. In particular we have

x 7→ NhN ([x]N−1, y) = 0 for each y ∈ S.

Putting y = x here we get Nh∗N = 0. If multiplication by N ! is injective in H
then h∗N = 0 follows immediately. If S is divisible by N ! then for each u ∈ S
we can choose x ∈ S such that u = xN , so 0 = Nh∗N (x) = h∗N (xN ) = h∗N (u)
for all u ∈ S. So in either case we have h∗N = 0, and the rest follows from (2.3)
by the inductive hypothesis. �

The following, which introduces the canonical representation (2.5) of a
generalized polynomial of degree at most n, is an extension of [8, Theorem 2.3].

Theorem 2.6. Let S be a semigroup, H an Abelian group, n ∈ N0, and
f : S → H a generalized polynomial of degree at most n. Suppose that either
multiplication by n! is bijective in H, or S is uniquely divisible by n!. Then
there exist unique functions hj ∈ Ajsym(S,H) for 0 ≤ j ≤ n such that

f =
n∑
j=0

h∗j .(2.5)

Proof. By definition we have f =
∑n
j=0 f

∗
j where fj ∈ Aj(S,H) for

0 ≤ j ≤ n. If multiplication by n! is bijective in H, then for each j ∈ {1, . . . , n}
we define hj ∈ Ajsym(S,H) by

hj(x1, . . . , xj) :=
1

j!

∑
π

fj(xπ(1), . . . , xπ(j)), x1, . . . , xj ∈ S,
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where π runs through all permutations of the set {1, . . . , j}. Define
h0 := f0. Then we have h∗j = f∗j for each j, and representation (2.5) holds.

On the other hand if S is uniquely divisible by n! then we define

hj(x1, . . . , xj) :=
∑
π

fj(x
1/j!
π(1), xπ(2), . . . , xπ(j)), x1, . . . , xj ∈ S,

for 1 ≤ j ≤ n, and h0 := f0. It is easily verified that hj ∈ Ajsym(S,H) and
h∗j = f∗j for each j, so again we have (2.5).

To prove uniqueness suppose there exists another representation

f =

n∑
j=0

g∗j ,

where gj ∈ Ajsym(S,H) for 0 ≤ j ≤ n. Then

0 = f − f =

n∑
j=0

(h∗j − g∗j ) =

n∑
j=0

(hj − gj)∗.

From Lemma 2.5 we get (gj−hj)∗ = 0 for each j ∈ {0, . . . , n}, since gj−hj ∈
Ajsym(S,H). Then by Lemma 2.4 we have gj = hj for all j. �

3. Extensions of generalized polynomials

In this section we start with the following, which is [1, Theorem 3].

Proposition 3.1. Let G,H be groups, let S be a sub-semigroup of G such
that

G = S · S−1 := {xy−1 | x, y ∈ S},(3.1)

and let ψ : S → H be a homomorphism of S into H. Then ψ can be extended
to a homomorphism ψ̃ : G→ H in a unique way.

We will say that the sub-semigroup S ⊆ G generates the group G if (3.1)
holds (although that is only one very special way that S can generate G if G
is not Abelian, cf. [1]).

A standard example of a semigroup generating a group is that every com-
mutative cancellative semigroup S can be embedded in an Abelian group G,
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so we can view S as a sub-semigroup of G via the canonical embedding (see [3,
p. 31] or [6, Theorem 3.10]). The procedure used for the embedding is similar
to the construction of the field of fractions of an integral domain.

The next result generalizes Proposition 3.1 to multi-homomorphisms.

Theorem 3.2. Let G,H be groups, let S be a semigroup that generates G,
and let n ∈ N0. Then every n-homomorphism h : Sn → H can be extended to
an n-homomorphism h̃ : Gn → H in a unique way.

Proof. For n = 0 this is trivial, and for n = 1 this is Proposition 3.1. Now
let n ≥ 2 and let h : Sn → H be n-homomorphic. For fixed s2, . . . , sn ∈ S,
consider the homomorphism

S 3 s 7→ h(s, s2, . . . , sn)

of S intoH. By Proposition 3.1 there exists a unique extension of this mapping
to a homomorphism of G into H. That is, there exists a unique function
h1 : G× Sn−1 → H such that

h1(s, s2, . . . , sn) = h(s, s2, . . . , sn), s, s2, . . . , sn ∈ S,

and h1 is homomorphic in each variable. Now fix g1 ∈ G and s3, . . . , sn ∈ S
(if n ≥ 3) and consider the homomorphism

s 7→ h1(g1, s, s3, . . . , sn)

of S into H. Applying Proposition 3.1 again we get a unique extension of this
mapping to a homomorphism of G into H, so we have a unique h2 : G2 ×
Sn−2 → H which is homomorphic in each variable and agrees with h1 (and
therefore h) on Sn. Continuing this process we arrive at a unique n-homomor-
phism hn : Gn → H such that the restriction of hn to Sn is h. Let h̃ := hn. �

For generalized polynomials we assume that the target space is commuta-
tive.

Theorem 3.3. Let G be a group, S a semigroup that generates G, and H
an Abelian group. Then every generalized polynomial f : S → H of degree at
most n ∈ N0 can be extended to a generalized polynomial f̃ : G→ H of degree
at most n.

Furthermore, if either S is uniquely divisible by n! or multiplication by n!
is bijective in H then the extension is unique.
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Proof. Let the generalized polynomial f : S → H have representation
(2.1) with generalized monomials fj : S → H of degree j for 0 ≤ j ≤ n. By
Theorem 3.2 every j-additive function F : Sj → H extends to a j-additive
F̃ : Gj → H in a unique way. It follows that each generalized monomial fj
extends to a generalized monomial f̃j : G → H, so f has an extension to
a generalized polynomial f̃ : G→ H given by

f̃ :=

n∑
j=0

f̃j .

The uniqueness statement follows from Theorem 2.6. �

One consequence is that generalized polynomials on cancellative commu-
tative semigroups can be extended to the groups they generate.

Corollary 3.4. Let S be a cancellative commutative semigroup and H
an Abelian group. Then every generalized polynomial f : S → H of degree at
most n ∈ N0 can be extended to a generalized polynomial f̃ : G→ H of degree
at most n, where G = S − S is the (Abelian) group generated by S.

Proof. Let φ : S → G be the canonical embedding of S in G. Then we
can identify S with its image φ(S) contained in G, so S ⊆ G. Now apply
Theorem 3.3. �

4. Exponentials and generalized exponential polynomials

Let S be a semigroup and R a (not necessarily commutative) ring. A func-
tion m : S → R is multiplicative if m(xy) = m(x)m(y) for all x, y ∈ S. That
is,m is a homomorphism of S into the multiplicative semigroup of R. A multi-
plicative functionm 6= 0 is called an exponential. Exponentials on a semigroup
are not extendable in the same way that generalized polynomials are, but we
can make them so by imposing an extra condition.

A multiplicative function from a group G into a ring R must be identically
0 if it takes the value 0 at any point. Indeed, if m(y0) = 0 for any y0 ∈ G then
for all x ∈ G we have m(x) = m(xy−1

0 y0) = m(xy−1
0 )m(y0) = 0. It follows

that any exponential from G into R is a multiplicative function from G into
the multiplicative sub-semigroup R× := R \ {0}.

The next example shows that if a semigroup S generates a group G then,
unlike our findings for generalized polynomials, an exponential on S may not
extend to an exponential on G.
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Example 4.1. Let G = (R+, ·) be the multiplicative group of positive real
numbers, and let R be a ring with multiplicative identity 1R 6= 0R. Let S be
the sub-semigroup (0, 1] ⊆ G, and define m : S → R by

m(x) :=

{
1R if x = 1,

0R if x ∈ (0, 1).

Then S generates G and m is an exponential on S, but it is impossible to
extend m to an exponential on G.

To remedy this situation we introduce a stronger type of exponential on
a semigroup. We say that a function m : S → R is a strict exponential if m is
a semigroup homomorphism of S into R×.

Corollary 4.2. Let S be a semigroup generating a group G, and let R
be a division ring. Then every strict exponential on S into R can be extended
to an exponential on G into R in a unique way.

Proof. Apply Theorem 3.1 with H = R×. �

Let n ∈ N0. A function φ : G → K is called a generalized exponential
polynomial of degree at most n on a group G into a field K if there exist
k ∈ N, exponentials mj : G → K and generalized polynomials pj : G → K of
degree at most n for 1 ≤ j ≤ k, such that

φ =

k∑
j=1

pjmj .

A generalized strict exponential polynomial of degree at most n on a semigroup
S into K is defined similarly but with the additional requirement that each
mj : S → K is a strict exponential (and with the obvious change of G to S).
The following consequence of Corollary 4.2 and Theorem 3.3 is obvious.

Corollary 4.3. Let G be a group, S a sub-semigroup that generates G,
and K a field. Then every generalized strict exponential polynomial φ : S → K
of degree at most n can be extended to a generalized exponential polynomial
φ̃ : G→ K of degree at most n.

We note that Székelyhidi [9, Theorem 5] proved a similar result for the
case that G is an Abelian group, S is a subgroup of G, and K = C.
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