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DETERMINANTS OF TOEPLITZ–HESSENBERG MATRICES
WITH GENERALIZED LEONARDO NUMBER ENTRIES

Taras Goy, Mark Shattuck

Abstract. Let un = un(k) denote the generalized Leonardo number defined
recursively by un = un−1 + un−2 + k for n ≥ 2, where u0 = u1 = 1. Terms
of the sequence un(1) are referred to simply as Leonardo numbers. In this pa-
per, we find expressions for the determinants of several Toeplitz–Hessenberg
matrices having generalized Leonardo number entries. These results are ob-
tained as special cases of more general formulas for the generating function of
the corresponding sequence of determinants. Special attention is paid to the
cases 1 ≤ k ≤ 7, where several connections are made to entries in the On-Line
Encyclopedia of Integer Sequences. By Trudi’s formula, one obtains equivalent
multi-sum identities involving sums of products of generalized Leonardo num-
bers. Finally, in the case k = 1, we also provide combinatorial proofs of the
determinant formulas, where we make extensive use of sign-changing involu-
tions on the related structures.

1. Introduction

Given a variable k, let un = un(k) denote the n-th generalized Leonardo
number defined by the recursion un = un−1 + un−2 + k for n ≥ 2, with
u0 = u1 = 1. The un were apparently first introduced by Bicknell-Johnson
and Bergum in [5] and studied further in [4, 17] and [23] from the algebraic
and combinatorial standpoints, respectively. The case k = 1 of un(k) gives
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what are known as the (classical) Leonardo numbers, which were introduced
by Dijkstra in conjunction with his smoothsort algorithm [8] (see also [9]).
We will denote here terms of the sequence un(1) by `n for n ≥ 0. For further
information on `n, we refer the reader to entry A001595 in the OEIS [24], and
for a complete list of identities, see, e.g., [2]. The un have generating function
formula

(1.1)
∑
n≥0

unx
n =

1− x+ kx2

1− 2x+ x3
,

from which it is seen that un is also given recursively by un = 2un−1 − un−3
for n ≥ 3, with initial values u0 = u1 = 1 and u2 = k + 2.

The Leonardo numbers have been an object of ongoing research and sev-
eral generalizations and variants have been recently considered. For example,
incomplete Leonardo numbers were introduced in [7] and a p-version of `n
was studied in [27] in analogy with Fibonacci and Lucas numbers. For other
extensions of `n, see, e.g., [18, 21, 22, 25]. Complex Leonardo numbers were
considered in [1, 15, 16], where various properties including recurrences and
explicit formulas were shown. Further extensions in terms of hybrid numbers
with Leonardo [1] or complex Leonardo [15] coefficients or in terms of the
quaternions [14] or octonians [28] have subsequently been studied. Here, we
consider some new combinatorial aspects of the generalized Leonardo numbers
un as it pertains to their occurrence in certain Toeplitz–Hessenberg matrices.
This extends to un some recent determinant formulas found for Toeplitz–
Hessenberg matrices whose nonzero entries were derived from such sequences
as the Catalan [10], generalized Fibonacci [11], Motzkin [12] and Schröder [13]
numbers.

The organization of this paper is as follows. In the next section, we pro-
vide some general generating function formulas for determinants of Toeplitz–
Hessenberg matrices whose nonzero entries are given by arbitrary translates of
the sequence un or u2n. From this, one can obtain explicit formulas for these
determinants in terms of Fibonacci polynomials. In the third section, we con-
sider the case k = 1 of un(k) and obtain, as special cases of the results from the
second, some simple explicit formulas of determinants of Toeplitz–Hessenberg
matrices having Leonardo number entries. We consider in the fourth section
further special cases of the results from the second and find determinants of
matrices whose nonzero entries come from un(k) for 2 ≤ k ≤ 7. Note that
this leads to new expressions in terms of determinants of several sequences
appearing in [24]. In the final section, we provide combinatorial proofs of our
formulas in the case k = 1. To do so, we make use of the definition of the de-
terminant as a signed sum over the symmetric group and employ a variety of
counting techniques, including direct enumeration, bijections between related
structures and, perhaps most notably, sign-changing involutions.
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Let us now recall some well-known sequences. Let Fn, Ln and Qn denote,
respectively, the Fibonacci, Lucas and Pell–Lucas numbers satisfying Fn =
Fn−1 + Fn−2, Ln = Ln−1 + Ln−2 and Qn = 2Qn−1 + Qn−2 for n ≥ 2,
with initial values F0 = 0, F1 = 1, L0 = 2, L1 = 1 and Q0 = Q1 = 2.
See, respectively, entries A000045, A000032 and A002203 in [24] for further
information on these numbers. Recall un = (k + 1)Fn+1 − k for all n ≥ 0
(see, e.g., [17, Theorem 1]). Given a parameter z, let fn(z) denote the n-th
Fibonacci polynomial defined by fn(z) = zfn−1(z) + fn−2(z) for n ≥ 2, with
f0(z) = 0 and f1(z) = z. Note that fn(1) = Fn for all n ≥ 0.

2. Some general formulas

Let An denote the Toeplitz–Hessenberg matrix (see, e.g., [20]) given by

(2.1) An := An(a0; a1, . . . , an) =



a1 a0 0 · · · 0 0
a2 a1 a0 · · · 0 0
a3 a2 a1 · · · 0 0

· · · · · · · · ·
. . . · · · · · ·

an−1 an−2 an−3 · · · a1 a0
an an−1 an−2 · · · a2 a1

,

where a0 6= 0. The following result, known as Trudi’s formula [19, Theorem 1],
expresses det(An) in terms of a multinomial sum involving products of the ai.

Lemma 2.1. If n ≥ 1, then

(2.2) det(An) =
∑
s̃=n

(−a0)n−|s|
(

|s|
s1, . . . , sn

)
as11 a

s2
2 · · · asnn ,

where
( |s|
s1,...,sn

)
= |s|!

s1!s2!···sn! , s̃ = s1 + 2s2 + · · ·+ nsn, |s| = s1 + s2 + · · ·+ sn
and si ≥ 0 for all i.

Remark. The case a0 = 1 of (2.2) is known as Brioschi’s formula [20].
Note that the sum in (2.2) may be regarded as being over the set of partitions
of the positive integer n.

Let d(x) =
∑
n≥1 det(An)xn and g(x) =

∑
i≥1 aix

i. Using (2.2), together
with the fact y

1−y = y + y2 + · · · , one can establish the following relation
between the generating functions f and g.
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Lemma 2.2. We have

(2.3) d(x) =
− 1
a0
g(−a0x)

1 + 1
a0
g(−a0x)

.

We have the following generating function formulas for det(An) in the case
when ai is given by an arbitrary translate of the sequence ui, where we assume
here ui = 0 if i < 0.

Theorem 2.1. Let dm(x) = dm(x; a) be given by

dm(x) =
∑
n≥1

det(An(a;um+1, um+2, . . . , um+n))xn,

where m is an integer and a is arbitrary. If m ≥ 0, then

(2.4) dm(x) =


um+1x+um−1ax

2−uma
2x3

1−(um+1−2a)x−um−1ax2+(um−a)a2x3 , m ≥ 1;

x−kax2−a2x3

1+(2a−1)x+kax2−(a−1)a2x3 , m = 0.

If m < 0, then

(2.5) dm(x) = − (−ax)−m(1 + ax+ ka2x2)

a(1 + 2ax− a3x3) + (−ax)−m(1 + ax+ ka2x2)
.

Proof. First assume m ≥ 3. Then, by (1.1), we have

∑
n≥1

un+mx
n =

1

xm

∑
n≥m+1

unx
n =

1

xm

(
x+ kx2 − x3

1− 2x+ x3
−

m∑
n=1

unx
m

)

=
x+ kx2 − x3 − (1− 2x+ x3)

∑m
n=1 unx

n

xm(1− 2x+ x3)
.

Note that m ≥ 3 implies

(1− 2x+ x3)
m∑
n=1

unx
n = x+ kx2 − x3 + 0x4 + · · ·+ 0xm

+ (um−2 − 2um)xm+1 + um−1x
m+2 + umx

m+3

= x+ kx2 − x3 − um+1x
m+1 + um−1x

m+2 + umx
m+3,

upon making use of the recurrence un = 2un−1 − un−3. Thus, we have

gm(x) :=
∑
n≥1

un+mx
n =

um+1x− um−1x2 − umx3

1− 2x+ x3
.
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Hence, by (2.3),

dm(x) =
− 1
agm(−ax)

1 + 1
agm(−ax)

=

um+1x+um−1ax
2−uma

2x3

1+2ax−a3x3

1− um+1x+um−1ax2−uma2x3

1+2ax−a3x3

=
um+1x+ um−1ax

2 − uma2x3

1− (um+1 − 2a)x− um−1ax2 + (um − a)a2x3
,

which yields the first formula in (2.4) for m ≥ 3.
A similar argument applies in the m = 1 and m = 2 cases and yields

d1(x) =
(k + 2)x+ ax2 − a2x3

1− (k − 2a+ 2)x− ax2 − (a− 1)a2x3

and

d2(x) =
(2k + 3)x+ ax2 − (k + 2)a2x3

1− (2k − 2a+ 3)x− ax2 + (k − a+ 2)a2x3
,

from which the first formula in (2.4) is seen to hold in the m = 1 and m = 2
cases as well. On the other hand, if m = 0, then

d0(x) =
− 1
ag0(−ax)

1 + 1
ag0(−ax)

=
x−kax2−a2x3

1+2ax−a3x3

1− x−kax2−a2x3

1+2ax−a3x3

=
x− kax2 − a2x3

1 + (2a− 1)x+ kax2 − (a− 1)a2x3
,

which finishes the proof of (2.4). Finally, if m < 0, then

gm(x) =
∑
n≥1

un+mx
n =

∑
n≥m+1

unx
n−m = x−m

∑
n≥0

unx
n

=
x−m(1− x+ kx2)

1− 2x+ x3
,

and hence

dm(x) =
− (−ax)−m(1+ax+ka2x2)

a(1+2ax−a3x3)

1 + (−ax)−m(1+ax+ka2x2)
a(1+2ax−a3x3)

= − (−ax)−m(1 + ax+ ka2x2)

a(1 + 2ax− a3x3) + (−ax)−m(1 + ax+ ka2x2)
,

which gives (2.5) and completes the proof. �
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Comparable formulas can be found for the generating function of det(An)
in the case when ai is given by an arbitrary translate of u2n.

Theorem 2.2. Let hm(x) = hm(x; a) be given by

hm(x) =
∑
n≥1

det(An(a;um+2, um+4, . . . , um+2n))xn,

where m is an integer and a is arbitrary. If m ≥ 0, then

(2.6) hm(x) =


um+2x+(4um−um−2)ax

2+uma
2x3

1−(um+2−4a)x−(4um−um−2−4a)ax2−(um−a)a2x3 , m ≥ 2;

(2k+3)x+(k+4)ax2+a2x3

1−(2k−4a+3)x−(k−4a+4)ax2+(a−1)a2x3 , m = 1;

(k+2)x+3ax2+a2x3

1−(k−4a+2)x+(4a−3)ax2+(a−1)a2x3 , m = 0.

If m < 0, then
(2.7)

hm(x) =

−
(−ax)t(1−(k−2)ax+a2x2)

a(1+4ax+4a2x2+a3x3)+(−ax)t(1−(k−2)ax+a2x2) , m = −2t;

(−ax)t−1(x−(2k−1)ax2−ka2x3)
1+4ax+4a2x2+a3x3−(−ax)t−1(x−(2k−1)ax2−ka2x3) , m = 1− 2t,

where t denotes a positive integer.

Proof. First note∑
n≥1

u2nx
2n =

1

2

(∑
n≥1

unx
n +

∑
n≥1

un(−x)n
)

=
1

2

(
x+ kx2 − x3

1− 2x+ x3
+
−x+ kx2 + x3

1 + 2x− x3

)
=

(k + 2)x2 − 3x4 + x6

1− 4x2 + 4x4 − x6

and∑
n≥1

u2n−1x
2n−1 =

1

2

(∑
n≥1

unx
n −

∑
n≥1

un(−x)n
)

=
x+ (2k − 1)x3 − kx5

1− 4x2 + 4x4 − x6
,

which implies

∑
n≥1

u2nx
n =

(k + 2)x− 3x2 + x3

1− 4x+ 4x2 − x3
,
∑
n≥1

u2n−1x
n =

x+ (2k − 1)x2 − kx3

1− 4x+ 4x2 − x3
.
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To show (2.6), first assumem = 2s, where s is a non-negative integer. If s ≥ 3,
then

jm(x) : =
∑
n≥1

u2n+mx
n =

∑
n≥1

u2n+2sx
n =

∑
n≥s+1

u2nx
n−s

=
1

xs

(
(k + 2)x− 3x2 + x3

1− 4x+ 4x2 − x3
−

s∑
n=1

u2nx
n

)
.

From the generating function for u2n, we have the recurrence u2n = 4u2n−2−
4u2n−4 + u2n−6 for n ≥ 3, which implies

(1− 4x+ 4x2 − x3)

s∑
n=1

u2nx
n

= u2x+ (u4 − 4u2)x2 + (u6 − 4u4 + 4u2)x3 + 0x4 + · · ·+ 0xs

− (4u2s − 4u2s−2 + u2s−4)xs+1 + (4u2s − u2s−2)xs+2 − u2sxs+3

= (k + 2)x− 3x2 + x3 − u2s+2x
s+1 + (4u2s − u2s−2)xs+2 − u2sxs+3,

and hence

jm(x) =
u2s+2x− (4u2s − u2s−2)x2 + u2sx

3

1− 4x+ 4x2 − x3

=
um+2x− (4um − um−2)x2 + umx

3

1− 4x+ 4x2 − x3
.

Thus, by (2.3), we have

hm(x) =
− 1
ajm(−ax)

1 + 1
ajm(−ax)

=
um+2x+ (4um − um−2)ax2 + uma

2x3

1− (um+2 − 4a)x− (4um − um−2 − 4a)ax2 − (um − a)a2x3
,

which establishes the first formula in (2.6) for m ≥ 6 even.
A similar argument shows that this formula also holds in the m = 2 and

m = 4 cases. On the other hand, if m = 0, then

j0(x) =
(k + 2)x− 3x2 + x3

1− 4x+ 4x2 − x3
,

which gives

h0(x) =
− 1
aj0(−ax)

1 + 1
aj0(−ax)

=
(k + 2)x+ 3ax2 + a2x3

1− (k − 4a+ 2)x+ (4a− 3)ax2 + (a− 1)a2x3
.
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This finishes the proof of (2.6) for m even. A comparable proof applies in the
odd case of m, which we leave to the reader, upon letting m = 2s−1 for some
s > 0 and using the formula above for

∑
n≥1 u2n−1x

n. Finally, assume m < 0.
If m = −2t for some t > 0, then

jm(x) =
∑
n≥1

u2n+mx
n =

∑
n≥1

u2n−2tx
n =

∑
n≥1−t

u2nx
n+t = xt

∑
n≥0

u2nx
n

=
xt(1 + (k − 2)x+ x2)

1− 4x+ 4x2 − x3
,

which leads to the first formula in (2.7). A similar argument applies if m =
1− 2t, which completes the proof. �

From the expressions found for the generating functions in the prior two
theorems, it is possible to obtain the following general explicit formulas in
terms of Fibonacci polynomials. For convenience of notation, we will often
denote det(An(±1; a1, . . . , an)) simply by D±(a1, . . . , an).

Corollary 2.1. We have

(2.8) D+(u1, u2, . . . , un) = −k(k + 1)(i
√
k)n−3fn−3(i/

√
k), n ≥ 3,

and

(2.9) D+(u2, u3, . . . , un+1) =
k + 1

k
(fn(k) + fn−1(k)) , n ≥ 2,

where k 6= 0 is arbitrary and i is the imaginary unit.

Proof. By the well-known generating function formula
∑
n≥0 fn(z)xn =

zx
1−zx−x2 , we have∑

n≥3

(i
√
k)n−3fn−3(i/

√
k)xn = x3

∑
n≥0

fn(i/
√
k)(i
√
kx)n

=

i√
k
(i
√
kx)x3

1− i√
k
(i
√
kx)− (i

√
kx)2

=
−x4

1 + x+ kx2
.

Thus,

x− (k + 1)x2 − k(k + 1)
∑
n≥3

(i
√
k)n−3fn−3(i/

√
k)xn

= x− (k + 1)x2 +
k(k + 1)x4

1 + x+ kx2
=
x− kx2 − x3

1 + x+ kx2
= d0(x; 1),
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by the m = 0 case of (2.4), which implies (2.8). Similarly, we have

(k + 2)x+
k + 1

k

∑
n≥2

(fn(k) + fn−1(k))xn =
(k + 2)x+ x2 − x3

1− kx− x2
= d1(x; 1),

which implies (2.9) and completes the proof. �

Corollary 2.2. We have

(2.10) D+(u2, u4, . . . , u2n) =
(k + 1)in

k − 2
(fn(α)− ifn−1(α)), n ≥ 2,

and

(2.11) D+(u3, u5, . . . , u2n+1) =
(k + 1)k(n−2)/2

2k − 1

(
(2k + 1)fn(β)

+
(
k1/2 + k−1/2

)
fn−1(β)

)
, n ≥ 2,

excluding division by zero, where α = −i(k − 2) and β = 2k−1
k1/2

.

Proof. For (2.10), first note

∑
n≥2

(fn(α)− ifn−1(α))(ix)n =
αix(1 + x)

1− αix+ x2
− αix

=
αx2(i− α− ix)

1− αix+ x2
=

(k − 2)x2(k − 1− x)

1− (k − 2)x+ x2
.

Hence, we have

(k + 2)x+
k + 1

k − 2

∑
n≥2

(fn(α)− ifn−1(α))(ix)n

= (k + 2)x+
(k + 1)x2(k − 1− x)

1− (k − 2)x+ x2
=

(k + 2)x+ 3x2 + x3

1− (k − 2)x+ x2
= h0(x; 1),

by the m = 0 case of (2.6), which implies (2.10). Now observe∑
n≥2

(
k(n−2)/2(2k + 1)fn(β) + k(n−2)/2

(
k1/2 + k−1/2

)
fn−1(β)

)
xn

=
2k + 1

k

(
(2k − 1)x

1− (2k − 1)x− kx2
− (2k − 1)x

)
+
k + 1

k
· (2k − 1)x2

1− (2k − 1)x− kx2
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=
(4k2 − 1)x+ (k + 1)(2k − 1)x2

k(1− (2k − 1)x− kx2)
− (4k2 − 1)x

k

=
(4k + 1)(2k − 1)x2 + (4k2 − 1)x3

1− (2k − 1)x− kx2

and

(2k + 3)x+
k + 1

2k − 1
· (4k + 1)(2k − 1)x2 + (4k2 − 1)x3

1− (2k − 1)x− kx2

= (2k + 3)x+
(k + 1)(4k + 1)x2 + (k + 1)(2k + 1)x3

1− (2k − 1)x− kx2

=
(2k + 3)x+ (k + 4)x2 + x3

1− (2k − 1)x− kx2
= h1(x; 1),

by the m = 1 case of (2.6), which implies (2.11) and completes the proof. �

Remark. Recall that the Fibonacci polynomial fn(z) is given explicitly by

fn(z) =
z√

z2 + 4

((z +
√
z2 + 4

2

)n
−
(z −√z2 + 4

2

)n)
, n ≥ 0,

as well as by the binomial expansion

fn(z) =

n−1∑
j=0

zn−2j
(
n− 1− j

j

)
, n ≥ 0.

Combining these formulas with (2.8), for example, yields

D+(u1, u2, . . . , un)

=
k(k + 1)i√

4k − 1

((−1− i
√

4k − 1

2

)n−3
−
(−1 + i

√
4k − 1

2

)n−3)
, n ≥ 2,

and

D+(u1, u2, . . . , un) = (−1)nk(k + 1)

n−4∑
j=0

(−k)j
(
n− 4− j

j

)
, n ≥ 3.

Comparable formulas may be given for D+(u2, . . . , un+1), D+(u2, . . . , u2n)
and D+(u3, . . . , u2n+1) using (2.9), (2.10) and (2.11).
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3. Leonardo number determinant formulas

We have the following simple formulas for determinants involving the clas-
sical Leonardo numbers.

Theorem 3.1. If n ≥ 2, then

D−(`0, `1, . . . , `n−1) = F2n−1 + F2n−4,(3.1)

D+(`1, `2, . . . , `n) =


0, if n ≡ 0 (mod 3);

2, if n ≡ 1 (mod 3);

−2, if n ≡ 2 (mod 3),

(3.2)

D+(`2, `3, . . . , `n+1) = 2Fn+1,(3.3)

D−(`1, `3, . . . , `2n−1) = 2 ·A010903[n− 2],(3.4)

D+(`2, `4, . . . , `2n) =


−2, if n ≡ 0 (mod 3);

2, if n ≡ 1 (mod 3);

0, if n ≡ 2 (mod 3),

(3.5)

D+(`3, `5, . . . , `2n+1) = 2Fn+3.(3.6)

Proof. We obtain these expressions as special cases of Theorems 2.1 and
2.2 when k = 1. First recall the generating functions∑

n≥0

Fnx
n =

x

1− x− x2
,
∑
n≥0

F2nx
n =

x

1− 3x+ x2
,

∑
n≥1

F2n−1x
n =

x(1− x)

1− 3x+ x2
.

By the m = a = −1 case of (2.5), we have

d−1(x;−1) =
x(1− x)

1− 3x+ x2
+

x3

1− 3x+ x2
=
∑
n≥1

F2n−1x
n +

∑
n≥2

F2n−4x
n,

which implies (3.1), where d−1(x;−1) (and other such subsequent functions)
is understood here to be evaluated at k = 1. By them = 0, a = 1 case of (2.4),
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we have

d0(x; 1) =
x(1− x− x2)

1 + x+ x2
=
x(1− 2x+ x3)

1− x3
= x+

2x4

1− x3
− 2x2

1− x3
,

which implies (3.2). By the m = a = 1 case of (2.4), we have

d1(x; 1) =
x(3 + x− x2)

1− x− x2
= 3x+

4x2 + 2x3

1− x− x2

= 3x+ 2

(
1

1− x− x2
− 1− x

)
= 3x+ 2

∑
n≥2

Fn+1x
n,

which implies (3.3).
By the m = a = −1 case of (2.7), we have

h−1(x;−1) =
x(1 + x− x2)

1− 5x+ 3x2
= x+

6x2 − 4x3

1− 5x+ 3x2
= x+2

∑
n≥2

A010903[n−2]xn,

which implies (3.4), where we have made use of the fact
∑
n≥0A010903[n]xn =

3−2x
1−5x+3x2 in the last equality. By the m = 0, a = 1 case of (2.6), we have

h0(x; 1) =
x(3 + 3x+ x2)

1 + x+ x2
=
x(3− 2x2 − x3)

1− x3
= 3x− 2x3

1− x3
+

2x4

1− x3
,

which implies (3.5). Finally, by the m = a = 1 case of (2.6), we have

h1(x; 1) =
x(5 + 5x+ x2)

1− x− x2
= 5x+

10x2 + 6x3

1− x− x2

= 5x+
2

x2

(
1

1− x− x2
− 1− x− 2x2 − 3x3

)
= 5x+

2

x2

∑
n≥4

Fn+1x
n = 5x+ 2

∑
n≥2

Fn+3x
n,

which implies (3.6) and completes the proof. �

By Lemma 2.1, the determinant formulas from the preceding theorem yield
the following identities involving Leonardo numbers and multinomial coeffi-
cients.
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Corollary 3.1. If n ≥ 2, then

∑
s̃=n

(
|s|

s1, . . . , sn

)
`s10 `

s2
1 · · · `

sn
n−1 = F2n−1 + F2n−4,

∑
s̃=n

(−1)n−|s|
(

|s|
s1, . . . , sn

)
`s11 `

s2
2 · · · `snn =


0, if n ≡ 0 (mod 3);

2, if n ≡ 1 (mod 3);

−2, if n ≡ 2 (mod 3),∑
s̃=n

(−1)n−|s|
(

|s|
s1, . . . , sn

)
`s12 `

s2
3 · · · `

sn
n+1 = 2Fn+1,

∑
s̃=n

(
|s|

s1, . . . , sn

)
`s11 `

s2
3 · · · `

sn
2n−1 = 2 ·A010903[n− 2],

∑
s̃=n

(−1)n−|s|
(

|s|
s1, . . . , sn

)
`s12 `

s2
4 · · · `

sn
2n =


−2, if n ≡ 0 (mod 3);

2, if n ≡ 1 (mod 3);

0, if n ≡ 2 (mod 3),∑
s̃=n

(−1)n−|s|
(

|s|
s1, . . . , sn

)
`s13 `

s2
5 · · · `

sn
2n+1 = 2Fn+3.

4. Generalized Leonardo determinants for 2 ≤ k ≤ 7

In this section, we give determinant formulas of some Toeplitz–Hessenberg
matrices whose nonzero entries are derived from the sequence un(k) for 2 ≤
k ≤ 7. The first several terms of the sequence un(k) for 2 ≤ k ≤ 7, starting
with the n = 0 term, are as follows:

k = 2: 1, 1, 4, 7, 13, 22, 37, 61, 100, 163, 265, 430, 697, 1129, 1828, 2959, . . .
k = 3: 1, 1, 5, 9, 17, 29, 49, 81, 133, 217, 353, 573, 929, 1505, 2437, 3945, . . .
k = 4: 1, 1, 6, 11, 21, 36, 61, 101, 166, 271, 441, 716, 1161, 1881, 3046, 4931, . . .
k = 5: 1, 1, 7, 13, 25, 43, 73, 121, 199, 325, 529, 859, 1393, 2257, 3655, 5917, . . .
k = 6: 1, 1, 8, 15, 29, 50, 85, 141, 232, 379, 617, 1002, 1625, 2633, 4264, 6903, . . .

k = 7: 1, 1, 9, 17, 33, 57, 97, 161, 265, 433, 705, 1145, 1857, 3009, 4873, 7889, . . .

Note that the sequences un(2) and un(5) correspond respectively to entries
A111314 and A111721 in [24].

The results below involving particular determinants with entries from
un(k) for 2 ≤ k ≤ 7 may be obtained by applying the formulas from the
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second section above. In each case, the recurrence stated for the correspond-
ing sequence of determinants, denoted by an, is valid for all n ≥ 4. All other
formulas hold for n ≥ 2, unless stated otherwise. We also give in each case
at least the first ten terms of the sequence an, starting with a1. Note that
by Trudi’s formula, one obtains analogues of the identities in Corollary 3.1
involving un(k) for each k.

Case k = 2:

2.1 D+(u1, u2, . . . , un) =
6i√

7

((−1− i
√

7

2

)n−3
−
(−1 + i

√
7

2

)n−3)
,

= 6(−1)n
n−4∑
j=0

(−2)j
(
n− 4− j

j

)
, n ≥ 3,

= 6 ·A001607[n− 3], n ≥ 3.

Sequence: 1, −3, 0, 6, −6, −6, 18, −6, −30, 42, 18, −102, . . .
Recurrence: an = −an−1 − 2an−2.

2.2 D+(u2, u3, . . . , un+1) =
3

2

(
(1 +

√
2)n + (1−

√
2)n
)

=
3

2
Qn−1,

=
3

2

(
fn−1(2) + fn(2)

)
= 3 ·A001333[n].

Sequence: 4, 9, 21, 51, 123, 297, 717, 1731, 4179, 10089, . . .
Recurrence: an = 2an−1 + an−2.

2.3 D+(u0, u2, . . . , u2n−2) =
3

2

n−3∑
j=0

(−2)n−1−j
(
n− 3 + j

2j

)
, n ≥ 3,

= 6 ·A087168[n− 3], n ≥ 3.

Sequence: 1, −3, 6, −6, −6, 42, −102, 138, −6, −534, 1626, −2742, . . .
Recurrence: an = −3an−1 − 4an−2.

2.4 D+(u2, u4, . . . , u2n) = 3 · (−1)b
n−1
2 c.

Sequence: 4, 3, −3, −3, 3, 3, −3, −3, 3, 3, −3, −3, 3, . . .
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Case k = 3:

3.1 D+(u1, u2, . . . , un) =
12i√

11

((−1− i
√

11

2

)n−3
−
(−1 + i

√
11

2

)n−3)
,

= 12(−1)n
n−4∑
j=0

(−3)j
(
n− 4− j

j

)
, n ≥ 3,

= −4 ·A110523[n− 2].

Sequence: 1, −4, 0, 12, −12, −24, 60, 12, −192, 156, 420, . . .
Recurrence: an = −an−1 − 3an−2.

3.2 D+(u2, u3, . . . , un+1)

=
4√
13

(
(7 + 2

√
13)
(3 +

√
13

2

)n−2
− (7− 2

√
13)
(3−

√
13

2

)n−2)
,

=
4

3

(
fn−1(3) + fn(3)

)
= 4 ·A003688[n].

Sequence: 5, 16, 52, 172, 568, 1876, 6196, 20464, 67588, 223228, . . .
Recurrence: an = 3an−1 + an−2.

3.3
D+(u2, u4, . . . , u2n) = (−1)n ·


−4, if n ≡ 0 (mod 3);

−4, if n ≡ 1 (mod 3);

8, if n ≡ 2 (mod 3).

Sequence: 5, 8, 4, −4, −8, −4, 4, 8, 4, −4, −8, −4, 4, . . .
Recurrence: an = an−1 − an−2.

Case k = 4:

4.1 D+(u1, u2, . . . , un) =
20i√

15

((−1− i
√

15

2

)n−3
−
(−1 + i

√
15

2

)n−3)
,

= 20(−1)n
n−4∑
j=0

(−4)j
(
n− 4− j

j

)
, n ≥ 3,

= 20(−1)nA106853[n− 4], n ≥ 4.

Sequence: 1, −5, 0, 20, −20, −60, 140, 100, −660, 260, 2380, . . .
Recurrence: an = −an−1 − 4an−2.
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4.2 D+(u2, u3, . . . , un+1) = 5F3n−1 =
5

4

(
fn−1(4) + fn(4)

)
.

Sequence: 6, 25, 105, 445, 1885, 7985, 33825, 143285, 606965, 2571145, . . .
Recurrence: an = 4an−1 + an−2.

4.3 D+(u0, u2, . . . , u2n−2) = 4i
√

15

((−3 + i
√

15

2

)n−4
−
(−3− i

√
15

2

)n−4)
,

= 60(−1)nA190960[n− 4], n ≥ 4.

Sequence: 1, −5, 10, 0, −60, 180, −180, −540, 2700, −4860, −1620, . . .
Recurrence: an = −3an−1 − 6an−2.

4.4 D+(u2, u4, . . . , u2n) = 10n− 5.

Sequence: 6, 15, 25, 35, 45, 55, 65, 75, 85, 95, . . .

Case k = 5:

5.1 D+(u1, u2, . . . , un) =
30i√

19

((−1− i
√

19

2

)n−3
−
(−1 + i

√
19

2

)n−3)
,

= 30(−1)n
n−4∑
j=0

(−5)j
(
n− 4− j

j

)
, n ≥ 3,

= 30(−1)nA106854[n− 4], n ≥ 4.

Sequence: 1, −6, 0, 30, −30, −120, 270, 330, −1680, 30, 8370, . . .
Recurrence: an = −an−1 − 5an−2.

5.2 D+(u2, u3, . . . , un+1)

=
6√
29

(
(16 + 3

√
29)
(5 +

√
29

2

)n−2
− (16− 3

√
29)
(5−

√
29

2

)n−2)
,

=
6

5

(
fn−1(5) + fn(5)

)
= 6 ·A015449[n].

Sequence: 7, 36, 186, 966, 5016, 26046, 135246, 702276, 3646626, 18935406, . . .
Recurrence: an = 5an−1 + an−2.

5.3 D+(u2, u4, . . . , u2n) = 6L2n−1.

Sequence: 7, 24, 66, 174, 456, 1194, 3126, 8184, 21426, 56094, . . .
Recurrence: an = 3an−1 − an−2.
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Case k = 6:

6.1 D+(u1, u2, . . . , un) =
42i√

23

((−1− i
√

23

2

)n−3
−
(−1 + i

√
23

2

)n−3)
,

= 42(−1)n
n−4∑
j=0

(−6)j
(
n− 4− j

j

)
, n ≥ 3,

= 42(−1)nA145934[n− 4], n ≥ 4.

Sequence: 1, −7, 0, 42, −42, −210, 462, 798, −3570, −1218, 22638, . . .
Recurrence: an = −an−1 − 6an−2.

6.2 D+(u2, u3, . . . , un+1)

=
7

10

(
(35− 11

√
10)(3−

√
10)n−2 + (35 + 11

√
10)(3 +

√
10)n−2

)
,

=
7

6

(
fn−1(6) + fn(6)

)
= 7 ·A015451[n].

Sequence: 8, 49, 301, 1855, 11431, 70441, 434077, 2674903, 16483495,
87065034, . . .
Recurrence: an = 6an−1 + an−2.

6.3 D+(u2, u4, . . . , u2n) =
7

2

(
(5 + 3

√
3)(2 +

√
3)n−2

+ (5− 3
√

3)(2−
√

3)n−2
)
,

= 7 ·A001834[n− 1].

Sequence: 8, 35, 133, 497, 1855, 6923, 25837, 96425, 359863, 1343027, . . .
Recurrence: an = 4an−1 − an−2.

Case k = 7:

7.1 D+(u1, u2, . . . , un) =
56i√

27

((−1− i
√

27

2

)n−3
−
(−1 + i

√
27

2

)n−3)
,

= 56(−1)n
n−4∑
j=0

(−7)j
(
n− 4− j

j

)
, n ≥ 3,

= 56(−1)nA145976[n− 4], n ≥ 4.

Sequence: 1, −8, 0, 56, −56, −336, 728, 1624, −6720, −4648, 51688, . . .
Recurrence: an = −an−1 − 7an−2.
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7.2 D+(u2, u3, . . . , un+1)

=
8

53

(
(212− 29

√
53)
(7−

√
53

2

)n−2
+ (212 + 29

√
53)
(7 +

√
53

2

)n−2)
,

=
8

7

(
fn−1(7) + fn(7)

)
= 8 ·A015453[n].

Sequence: 9, 64, 456, 3256, 23248, 165992, 1185192, 8462336, 60421544,
431413144, . . .
Recurrence: an = 7an−1 + an−2.

7.3 D+(u2, u4, . . . , u2n)

=
8√
21

(
(14 + 3

√
21)
(5 +

√
21

2

)n−2
− (14− 3

√
21)
(5−

√
21

2

)n−2)
,

= 8 ·A030221[n− 1].

Sequence: 9, 48, 232, 1112, 5328, 25528, 122312, 586032, 2807848,
13453208, . . .
Recurrence: an = 5an−1 − an−2.

5. Combinatorial proofs

In this section, we provide combinatorial proofs of formulas (3.1)–(3.6)
above involving the Leonardo numbers. Before doing so, let us recall combi-
natorial interpretations of the Fibonacci and Leonardo number sequences. By
a (linear) tiling of length n, we mean a covering of the numbers 1, 2, . . . , n,
written in a row, by rectangular 1 × m pieces for some m ≥ 1, called tiles,
that are capable of covering m consecutive numbers. Various restrictions are
usually placed as to the lengths of the individual tiles which are otherwise in-
distinguishable. A rectangular piece covering a single or two adjacent numbers
is referred to as a square or domino and is denoted by s or d, respectively.
The length of a tiling λ is denoted by |λ|.

A well-known combinatorial interpretation of the Fibonacci number Fn+1

is that it enumerates the set Fn of tilings in {s, d} of length n. This inter-
pretation of Fn+1 has been used in providing combinatorial proofs of a large
number of Fibonacci identities; see, e.g., [3] and references contained therein.
In [23], a combinatorial interpretation for `n was given in terms of tilings as
follows. Consider tilings of length n using three types of tiles: squares, domi-
nos and a special kind of tile of variable length, which we will denote by d`.
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We require that a d` tile be first, if it occurs, but can have any length ` ≥ 2,
with this length being specified by its subscript. Let Ln denote the set of such
tilings of length n; note that |Ln| = `n for all n ≥ 0. For example, when n = 4,
we have

L4 = {s4, s2d, sds, ds2, d2, d2s2, d2d, d3s, d4},

where a sequence of length m of consecutive copies of a tile x is denoted by
xm. We will refer to members of Ln as Leonardo tilings and those in Fn as
square-and-domino tilings. Note that λ ∈ Ln for n ≥ 2 implies it must either
belong to Fn or have the form λ = d`λ

′, where 2 ≤ ` ≤ n and λ′ ∈ Fn−`.
From this, one obtains immediately the well-known relation

`n = Fn+1 +

n−2∑
i=0

Fi+1 = 2Fn+1 − 1, n ≥ 2,

which is seen to hold also for n = 0, 1. See [23] for a more general interpretation
of un that might be useful in explaining some of the determinant formulas in
the fourth section involving un where k > 1, which we leave for the interested
reader to explore.

Recall that the determinant of an n× n matrix A is given explicitly by

(5.1) det(A) =
∑
σ∈Sn

(−1)sgn(σ)a1,σ(1)a2,σ(2) · · · an,σ(n),

where A = (ai,j) and sgn(σ) denotes the sign of the permutation σ. If A
is Toeplitz–Hessenberg, then one need only consider terms corresponding to
those permutations σ in (5.1) in which every cycle consists of a set of consec-
utive integers in increasing order (assuming that the smallest element is first
in each cycle), as all other terms must contain at least one ai,j factor that
equals zero. Assume that the cycles of such a permutation σ are arranged in
increasing order of their smallest elements. Then such permutations are syn-
onymous with the compositions of n, upon regarding the various cycle lengths
going from left to right as a sequence of parts.

Thus, one may regard the sum in (5.1) when A = An has the form (2.1) as
being over the set of compositions of n weighted as follows. Each part of size i
receives weight ai and the weight of a composition is the product of the weights
of its parts. We will restrict our attention to cases when a0 = ±1. If a0 = −1,
then the (−1)sgn(σ) factor in each term in (5.1) is equal to the product of
the superdiagonal −1 factors, and hence det(A) in this case gives the sum of
the weights of all the compositions of n. On the other hand, if a0 = 1, then
one has that det(A) is a signed weighted sum over the compositions of n,
where the weight is defined as before and the sign is given by (−1)n−m with
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m denoting the number of parts in a composition (i.e., the number of cycles
in the corresponding permutation σ in (5.1)).

Suppose now that ai enumerates some set Ωi of tilings for each i ≥ 1.
In this case, consider overlaying each part of size i of a composition with
a member of Ωi. That is, if σ = (σ1, . . . , σm) with

∑m
i=1 σi = n and σi ≥ 1,

then we overlay σi with some λi ∈ Ωσi for each i. Let λ = λ1 · · ·λm denote
the concatenation of the tilings λi, where we mark the final tile of each λi.
Let Υn,m denote the set of all (marked) tilings that arise in this way. Define
the sign of λ ∈ Υn,m by (−1)n−m and let Υn = ∪nm=1Υn,m. In certain cases
(see proofs of (3.3) and (3.6) below), it will be convenient to view members
of Υn as vectors whose components are certain kinds of linear tilings such
that the sum of the functional values of some function of the lengths of the
components is n.

Let σ(S) denote the sum of the signs of all members of a signed set S. If
a0 = 1 in (2.1), then it is seen that det(A) = σ(Υn), as every part σi within
a composition in the sum (5.1) is weighted by aσi = |Ωσi |, with the sign of
each λ ∈ Υn the same as the corresponding σ from which it arose. On the
other hand, if a0 = −1, then all terms are non-negative in det(A) as described
above and we get det(A) = |Υn|. Below, we consider some cases when Ωi
corresponds to a subset of Lai+b for various constants a and b and thus the
corresponding Υn consists of a certain set of marked tilings in {s, d, d`} such
that d` can only occur at the very beginning or directly following a marked
tile. The task at hand then is to determine σ(Υn) or |Υn| in these cases
depending on if a0 = 1 or −1. If a0 = 1, it will be useful to define a pairing
of the members of Υn (i.e., an involution on Υn with no fixed points) such
that each member is paired with another whose number of marked tiles is of
opposite parity. See [12, 13], where a comparable strategy involving lattice
paths instead of linear tilings has been employed in establishing formulas for
det(A) by combinatorial arguments.

Before proceeding, let us define a couple of further classes of tilings. By
a generalized tiling, we mean one whose tiles consist of s, d or d` for ` ≥ 2,
where there are no restrictions on the number of d` tiles or their positions. Let
Jn denote the set of generalized tilings of length n. Then Ln enumerated by
the Leonardo number corresponds the subset of Jn whose members contain
at most one d` piece where ` ≥ 2, with d` first if it occurs. LetMn denote the
set of “marked” generalized tilings of length n derived from the members of Jn
by marking some subset of the tiles, such that the final tile as well as each tile
directly preceding a d` is always marked. To establish the formulas in Theorem
3.1 combinatorially, we consider the problem of finding the cardinality or sum
of signs of a certain subset ofMn in several cases.
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5.1. Proof of (3.1)

Let An denote the subset of Mn in which only squares may be marked.
Note that members of An must then end in a marked s and that a d` tile can
only occur directly after a marked s or at the very beginning. Since a sequence
x of tiles lying (strictly) between two consecutive marked squares, or prior to
the first marked square, within a member of An corresponds to a member of
Lp for some p ≥ 0 (where p denotes the sum of the lengths of the tiles in x),
it is seen that D−(`0, . . . , `n−1) = |An| for all n ≥ 1.

Let Tn denote the set of square-and-domino tilings of length 2n that end
in s, but not sds. By subtraction, we have

|Tn| = F2n − F2n−3 = F2n−1 + F2n−4, n ≥ 2,

so to complete the proof of (3.1), it suffices to define a bijection between An
and Tn. Let λ ∈ An. We decompose λ as λ = λ1 · · ·λj for some j ≥ 1, where
λi for each i ∈ [j] ends in a marked s and contains no other marked s. Let
λi = λ′is, where λ′i ∈ Lr with r = |λ′i| and the terminal s is marked. If λ′i does
not start with d`, then let g(λi) be obtained from λi by replacing each s in λ′i
with d and each d with sds and then appending s2 to the tiling that results
from these replacements. If λ′i starts with d`, then let g(λi) be obtained by
replacing s and d in λ′i with d and sds as before and then appending sd`s to
the resulting tiling. Finally, define g(λ) as the concatenation of the various
g(λi) tilings, i.e., g(λ) = g(λ1) · · · g(λj). Note that g(λ) ∈ Tn for all λ since it
is of length 2n and ends in either s2 or sd`s for some ` ≥ 2.

To reverse g, note first that ρ ∈ Tn may be regarded as a sequence con-
sisting of the following larger “pieces”: sdms for any m ≥ 1, d or s2, where
the final piece cannot be sds or d. To see this, note that the first s within an
sdms or s2 piece corresponds to an s which covers an odd number within the
original square-and-domino tiling ρ, whereas the second s corresponds to the
subsequent s within ρ which would then cover an even number. We decompose
ρ and ρ = ρ1 · · · ρj , where ρi for each i ∈ [j] ends in either s2 or sd`s for some
` ≥ 2. Suppose ρi ends in sd`s, and we transform ρi as follows. First replace
each sds with d and each d with s, going from left to right within ρi. To the
tiling that results from these replacements, we prepend a d` piece and append
an s, and subsequently mark the appended s. Let h(ρi) denote the (marked)
tiling that results. On the other hand, if ρi ends in s2, then to obtain h(ρi), we
perform the same replacements as before but only append s, which is again
marked, to the tiling that results. Let h(ρ) = h(ρ1) · · ·h(ρj) and note that
h(ρ) ∈ An. One may verify that the mappings g and h are inverses to one
another, which completes the proof of (3.1). �
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5.2. Proof of (3.2)

Define the sign of a member of Mn by (−1)n−j , where j denotes the
number of marked tiles. Then it is seen that D+(`1, . . . , `n) = σ(Mn) for all
n ≥ 1. We define a sign-changing involution onMn as follows, where we may
assume n ≥ 3. Consider the rightmost non-terminal tile that is not directly
followed by d` for some ` ≥ 2 (if it exists) and either mark this tile or remove
the marking from it. Then the setM′n of survivors of the foregoing involution
consists of those members ofMn that contain at most one tile that is not a
d`, with this tile at the very beginning, if it occurs.

We now define an involution onM′n as follows. Consider, if it exists, the
leftmost d` piece such that ` 6= 3, where we require further that this piece
be non-terminal if ` = 2. If ` ≥ 4, then we replace this d` with d2, d`−2, and
perform the reverse operation if ` = 2, leaving all other tiles undisturbed in
either case. Note that since every tile within a member ofM′n must be marked
(as each non-terminal tile directly precedes a d`), the preceding involution φ
is seen to always reverse the sign. Let S denote the set of survivors of φ. If
n = 3m for some m ≥ 1, then S = {dm3 , sdm−13 d2}, with the two members of
the doubleton S seen to be of opposite sign. Therefore, each member ofM′3m,
and thus also ofM3m, is paired with another of opposite parity, which implies
σ(M3m) = 0 and hence the first case of formula (3.2). If n = 3m + 1, then
S = {sdm3 , ddm−13 d2}, with both members of S having sign (−1)n−(m+1) =
(−1)2m = 1. Hence, σ(M3m+1) = 2, which yields the second case of (3.2).
Finally, if n = 3m + 2, then S = {ddm3 , dm3 d2}, with both members of S now
having sign −1, whence σ(M3m+2) = −2, which implies the last case of (3.2)
and completes the proof. �

5.3. Proof of (3.3)

Given n ≥ 2 and 1 ≤ j ≤ n, let Pn,j denote the set of j-tuples (λ1, . . . , λj)

of Leonardo tilings such that |λi| ≥ 2 for 1 ≤ i ≤ j and
∑j
i=1 (|λi| − 1) = n

(i.e.,
∑j
i=1 |λi| = n+ j). Define the sign of a member of Pn,j by (−1)n−j and

let Pn = ∪nj=1Pn,j . Then we have D+(`2, . . . , `n+1) = σ(Pn) and we seek to
define a sign-changing involution on Pn. Consider pairing members of Pn of
opposite sign based on alterations made to the final few components, leaving
all others unchanged. In the pairings below, only the relevant components of
λ = (λ1, . . . , λj) ∈ Pn,j for arbitrary j are indicated and how they change:
(i) λj = ρs↔ λj = ρ, λj+1 = d2, |ρ| ≥ 2,
(ii) λj = ρd↔ λj = ρs, λj+1 = d, |ρ| ≥ 1,
(iii) λj = d` ↔ λj = d`−1, λj+1 = d, ` ≥ 3,
(iv) λj−1 = ρd, λj = d↔ λj−1 = ρ, λj = sd, λj+1 = d, |ρ| ≥ 2,
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where ρ in each case denotes a Leonardo tiling. Note that (iv) only applies
if n ≥ 4.

Let α denote the composite mapping on Pn defined by (i)–(iv). If n ≥ 4,
then let P∗n denote the set of survivors of the involution α, with

P∗2 = {(s2, s2), (d, s2), (d2, s
2), (d, d)}

and

P∗3 = {(x, y, s2) : (x, y) ∈ P2} ∪ {(s2, d, d), (d, d, d)}.

Note that in the cases n = 2 and n = 3, we need only apply the pairings (i)–
(iii), along with the pairing (sd, d) ↔ (d2, d, d) in the n = 3 case, to obtain
the respective sets of survivors. We wish to extend α to members of the set
P∗n for n ≥ 3. To do so, given λ = (λ1, . . . , λj) ∈ P∗n ∩ Pn,j for a fixed j, let
λ(i) = (λ1, . . . , λi) for each i ∈ [j]. Consider an index i ∈ [j − 1], if it exists,
such that λ(i) ∈ Pr−P∗r for some r ∈ [2, n−1], with the remaining components
λi+1, . . . , λj of λ forming a sequence made up solely of the 2-tilings s2 and d
such that all runs of d are of even length. Note that the index i is uniquely
determined when it exists, which we denote by i0. Suppose λ(i0) ∈ Pr0 −P∗r0 ,
where 2 ≤ r0 < n. We apply the involution α (in the case n = r0) to λ(i0),
and then append the remaining components λi0+1, . . . , λj of λ to α(λ(i0)). We
pair with λ the resulting member of P∗n, which is seen to have parity opposite
that of λ.

One can show that the set S of survivors in P∗n of the extended involution
comprises those λ = (λ1, λ2, . . .) wherein each component λi is s2 or d, except
for possibly the first, which may also be d2, such that (I) all runs of d compo-
nents are of even length, except for a possible run of d starting with the first
component, which can have odd length, and (II) if λ1 = d2, then λ2 = s2. For
example, when n = 2 and n = 3, we have S = P∗2 and

S = {(s2, s2, s2), (d, s2, s2), (d2, s
2, s2), (d, d, s2), (s2, d, d), (d, d, d)},

respectively. Note that all members of S necessarily belong to Pn,n, and hence
have positive sign, as all components in each survivor are of length two. Thus,
we have σ(Pn) = |S|, so to complete the proof, we must enumerate S. To aid in
doing so, let T denote the set of marked compositions of n with parts in {1, 2}
where the first part may be marked. To define a correspondence between S and
T , consider making the following replacements within λ = (λ1, . . . , λn) ∈ S:
(a) replace an initial run, if it occurs, of d components in λ of length 2` + 1
for some ` ≥ 0 with 1′2`, where the prime indicates that a part is marked,
(b) replace λ1 = d2, λ2 = s2, if it occurs, with 2′, and (c) replace all other
s2 components with 1 and all other runs of d, which must be of even length,
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say 2t for some t ≥ 1, with the string 2t. Let β(λ) denote the member of T
that results from concatenating the various sequences of parts arising from the
replacements in (a)–(c) applied to λ, going from left to right. For example, if
n = 10 and

λ = (d, d, d, s2, s2, d, d, d, d, s2) ∈ S,

then β(λ) = 1′212221 ∈ T . One may verify that β is a bijection between S
and T , and hence |S| = |T | = 2Fn+1, which implies (3.3). �

5.4. Proof of (3.4)

Let Bn denote the subset of M2n consisting of those tilings in which the
only tiles that may be marked are squares covering even numbers. Note that
by the definitions members of Bn must end in a marked square. Consider
overlaying each part of size r within a composition of n with a member of
L2r−1 followed by a marked square. By the discussion at the beginning of the
section, this implies D−(`1, . . . , `2n−1) = |Bn| for all n ≥ 1. We now recall a
combinatorial interpretation of the sequence A010903[n]. By an (r + b)-color
composition of n, where b is a fixed integer, we mean one in which each part
of size r for all r ≥ 1 is colored in one of r + b ways. Then it is known that
A010903[n] enumerates the set of (r+2)-color compositions of n+1 for n ≥ 0
(see [6]). To establish (3.4), we then need to demonstrate that |Bn| equals
twice the number of (r + 2)-color compositions of n − 1 for n ≥ 2. Let Vn
denote the set of marked (r+ 2)-color compositions of n− 1 wherein the first
part may be marked. Let bn = |Bn| and vn = |Vn|. Then vn = 2·A010903[n−2]
and we need to show bn = vn for n ≥ 2.

First note b2 = 6, the enumerated set being

B2 = {dss′, d2ss′, d3s′, sds′, s3s′, ss′ss′},

where a marked s is indicated by s′. We wish to write a recurrence for bn,
where n ≥ 3. To do so, we consider several cases based on the final sequence
of tiles within λ ∈ Bn. First, observe that if λ ends in -s′ss′, -s2s′ or -ds′, then
there are bn−1 possibilities in each case (for the last, consider inserting a d
directly prior to the terminal s within a member of Bn−1). Now suppose it is
the case that λ ends in -ss′ or -d`s′ for some ` and contains at least one other
s such that the third (second, if λ ends in -d`s′) rightmost s, either marked
or unmarked, occurs in position 2n − 2k for some 2 ≤ k ≤ n − 2. Note that
if λ ends in -d`s′, then the second rightmost s must be marked, with ` ≥ 3
odd. Thus, λ must end in either -s′d2k−1s′, -s′d`diss′, -s′dk−1ss′ or -sdk−1ss′,
where ` + 2i = 2k − 2 in the second case with ` ≥ 2 even and i ≥ 0. Hence,
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there are k+2 possibilities altogether for the endings of λ, which implies there
are (k + 2)bn−k such λ with one of the given endings for each k. Summing
over k yields

∑n−2
k=2(k+ 2)bn−k members of Bn of the form stated above for λ.

The remaining unaccounted for members of Bn must then be of one of
the following forms: (i) d`diss′, where ` + 2i = 2n − 2, ` ≥ 2 and i ≥ 0,
(ii) ss′d`djss′, where ` + 2j = 2n − 4, ` ≥ 2 and j ≥ 0, or (iii) one of
{dn−1ss′, s2dn−2ss′, ss′dn−2ss′, d2n−1s′, ss′d2n−3s′}. This gives 2n+ 2 addi-
tional possibilities and combining with the prior cases yields the recurrence

(5.2) bn = 2n+ 2 +

n−2∑
k=1

(k + 2)bn−k, n ≥ 3,

with initial value b2 = 6.
To complete the proof of (3.4), we argue that vn also satisfies recurrence

(5.2) for n ≥ 3, with the same initial condition. First note v2 = 6, as V2 =
{11, 12, 13, 1∗1, 1∗2, 1∗3}, where a marked initial part is starred and a part of
size r receiving the `-th color for some ` ∈ [r + 2] is denoted by r`. Now let
n ≥ 3 and suppose ρ ∈ Vn contains at least two parts, the last of which is k` for
some 1 ≤ k ≤ n−2 and ` ∈ [k+2]. Then there are bn−k options regarding the
remaining parts of ρ and allowing k to vary gives

∑n−2
k=1(k+2)bn−k possibilities

for ρ. Otherwise, ρ consists of a single part (n− 1)` for some ` ∈ [n+ 1] which
may be marked, yielding 2(n+1) additional possibilities. Combining with the
prior case implies vn satisfies recurrence (5.2), as desired. �

Remark. If preferred, it is possible to re-express the preceding argument
that bn = vn, which used (5.2), in terms of a recursive bijection between the
sets Bn and Vn for n ≥ 2.

5.5. Proof of (3.5)

Let Dn denote the subset ofM2n consisting of those members where only
tiles ending in an even position may be marked. Define the sign of a member of
Dn by (−1)n−j , where j denotes the number of marked tiles. Then it is seen
D+(`2, . . . , `2n) = σ(Dn) for all n ≥ 1. We define a series of sign-changing
involutions on Dn for n ≥ 2. Consider, if it exists, the leftmost non-terminal
tile ending in an even position and not directly followed by d` for some `, and
either mark this tile or remove the marking from it. Let D(1)

n denote the set
of survivors of this operation. We decompose λ ∈ D(1)

n as λ = λ(1) · · ·λ(j) for
some j ≥ 1, where λ(i) for each i ∈ [j] ends in a marked tile and contains no
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other marked tiles. We will refer to a subtiling λ(i) as a unit of λ. Note that
λ(1) must have one of the following forms:
(a) d`dis, where ` ≥ 3 is odd and i ≥ 0,
(b) a single d`, where ` ≥ 2 is even,
(c) sdis, where i ≥ 0, or a single d.
Further, a λ(i) where i > 1 can only be of the form (a) or (b) above, for
otherwise membership in D(1)

n would be violated.
We now define an involution on D(1)

n as follows. If λ(1) is of the form (a)
with i ≥ 1, then replace λ(1) = d`d

is with d2, directly followed by d`di−1s.
Note that d2 itself now comprises its own unit since d2 must be marked, as
it is followed by a d`, and hence this operation reverses the sign. If λ(1) is of
the form (b) with ` ≥ 4, then replace d` with d2, d`−2, which is again seen
to reverse the sign as the number of units changes by one. We perform the
inverse of one of the preceding two operations if λ(1) = d2, upon considering
the form of λ(2); note that n ≥ 2 implies λ(2) exists if λ(1) = d2. So assume
λ(1) is of the form d`s, sdis or d, where ` ≥ 3 is odd and i ≥ 0. In this case,
consider the smallest index r > 1, if it exists, such that λ(r) 6= d`s for some
`, which we denote by r0. If r0 < j, consider applying to λ(r0) one of the two
operations (or its inverse) defined above where λ(1) was of the form (a) or (b)
by either breaking apart λ(r0) into two units or combining λ(r0) and λ(r0+1)

into a single unit. If r0 = j, then proceed in the same manner unless λ(j) = d2.
We extend the involution on D(1)

n in a few cases when r0 does not exist or
r0 = j with λ(j) = d2. We will describe as main a unit of the form d`s, where
` ≥ 3 is odd. Suppose λ(1) = sdis where i ≥ 0, λ(2) through λ(j−1) are each
main units where j ≥ 2 and λ(j) = d2. Then combine λ(1) and λ(j) into the
single unit sdi+1s, deleting λ(j) from λ and leaving all other units unchanged.
Conversely, if λ(1) = sdis with i ≥ 1, and λ(2) through λ(j) are all main with
j = 1 allowed in this case, then replace λ(1) with sdi−1s and append the unit
λ(j+1) = d2.

Let D(2)
n denote the set of survivors of the (composite) sign-changing in-

volution defined in the preceding two paragraphs on D(1)
n . Then members

λ = λ(1) · · ·λ(j) ∈ D(2)
n are of one of the following forms:

(i) λ(i) is a main unit for 1 ≤ i ≤ j,
(ii) λ(j) = d2, with λ(i) main for 1 ≤ i < j,
(iii) λ(1) = s2 or d, with λ(i) main for 1 < i ≤ j,
(iv) λ(1) = d and λ(j) = d2, with λ(i) main for 1 < i < j.

By the preceding involutions, we have σ(Dn) = σ(D(2)
n ). To determine σ(D(2)

n ),
note first that members of D(2)

n of the form (i) may be viewed, upon halving,
as compositions of n with no parts of size 1. Similarly, members of D(2)

n in
(ii) or (iii) may be viewed as compositions of n − 1, while those in (iv) are



Determinants of Toeplitz–Hessenberg matrices...

synonymous with compositions of n − 2, where there are again no parts of
size 1 in each case.

We now consider cases on n mod 3 and first let n = 3m, where m ≥ 1. By
Lemma 5.1 below, the sum of the signs of the members of D(2)

3m in (i) is given
by (−1)3m−m = 1. Further, members of D(2)

3m of the form (ii) or (iii) are seen
to contribute 3 · (−1)3m−(m+1) = −3 towards σ(D(2)

3m) in total, whereas those
in (iv) contribute zero. Combining the contributions from (i)–(iv) then gives
σ(D(2)

3m) = −2, which implies the first case of formula (3.5). If n = 3m + 1,
then Lemma 5.1 implies that we get contributions towards σ(D(2)

3m+1) of 0,
3 and −1 from (i), (ii)/(iii) together and (iv), respectively. Thus, we have
σ(D(2)

3m+1) = 2, which implies the second case of (3.5). Finally, if n = 3m+ 2,
then we get respective contributions of −1, 0 and 1, whence σ(D(2)

3m+2) = 0,
which implies the third case of (3.5) and completes the proof. �

Let Kn denote the set of compositions of n with no parts of size 1. Define
the sign of ρ ∈ Kn by (−1)r, where r denotes the number of parts of ρ. We
have the following formula for the sum of signs of the members of Kn.

Lemma 5.1. If n ≥ 1, then

(5.3) σ(Kn) =


(−1)m, n = 3m;

0, n = 3m+ 1;

(−1)m+1, n = 3m+ 2.

Proof. Let ρ = ρ1 · · · ρr denote a member of Kn with r parts for some
r ≥ 1. Consider the smallest j ∈ [r], which we will denote by j0, such that
ρj 6= 3, where we require j < r if ρj = 2. If ρj0 ≥ 4, then replace the part
ρj0 with the two parts 2, ρj0 − 2, leaving all other parts of ρ undisturbed. If
ρj0 = 2, whence j0 < r, we perform the reverse operation of combining ρj0
and ρj0+1 into a single part of size ≥ 4. Note that these two operations taken
together yield a sign-changing involution that is defined on all members of Kn
except for ρ = 3m if n = 3m or ρ = 3m2 if n = 3m+ 2. Considering cases on
n mod 3 then gives formula (5.3). �

Remark. It is well-known (see, e.g., [26, p. 46]) that |Kn| = Fn−1 for
all n ≥ 1. Hence, the argument given above for Lemma 5.1 provides a quick
combinatorial proof of the fact that Fn is even if and only if n is divisible
by 3.
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5.6. Proof of (3.6)

We proceed in a manner analogous to the proof of (3.3) above and consider
a set of vectors whose components are tilings of a specific form. Given n ≥ 2
and 1 ≤ j ≤ n, let Qn,j denote the set of j-tuples (λ1, . . . , λj) of Leonardo
tilings such that |λi| ≥ 3 is odd for each i ∈ [j] and

∑j
i=1

(
|λi|−1

2

)
= n. Define

the sign of a member ofQn,j by (−1)n−j and letQn = ∪nj=1Qn,j . Then we have
D+(`3, . . . , `2n+1) = σ(Qn) and we seek to define a sign-changing involution
on Qn. We first pair members λ of Qn based on their final components as
indicated:
(i) λj = ρd↔ λj = ρ, λj+1 = sd,
(ii) λj = ρs2 ↔ λj = ρ, λj+1 = s3,
(iii) λj = γds↔ λj = γs, λj+1 = ds,
(iv) λj = d`+1s↔ λj = d`, λj+1 = ds, ` ≥ 3,
(v) λj−1 = ρd, λj = ds↔ λj−1 = ρ, λj = sd, λj+1 = ds,
(vi) λj = d` ↔ λj = d`−2, λj+1 = d2s, ` ≥ 5,

where ρ and γ denote Leonardo tilings with |ρ| ≥ 3 odd and |γ| ≥ 2 even and
` is odd. Note that (v) only applies if n ≥ 3.

If n ≥ 3, then the set of survivors of the composite involution obtained
by combining (i)–(vi) consists of those members of Qn whose final component
is d3 or d2s, where in the latter case, the penultimate component is not a
single d` for some ` ≥ 3. We extend the involution slightly as follows. Let
λ = (λ1, . . . , λj) ∈ Qn,j , where n ≥ 3 and j ≥ 2 with λj−1 6= d` and λj =
d2s. Apply (i)–(v) above to the member of Qn−1 comprising the first j − 1
components of λ. Then append the component d2s to the member of Qn−1
that results and it is seen that the member of Qn that arises in this way has
sign opposite that of λ.

Let Q(1)
n denote the set of remaining members of Qn that have not been

paired by any of the previously defined operations. If n ≥ 4, then Q(1)
n consists

of those members ofQn having last component d3 or last two components both
equal to d2s. If n = 3, then Q(1)

3 contains these same members of Q3, together
with (sd, ds, d2s). If n = 2, then

Q(1)
2 = {(x, d3) : x ∈ L3} ∪ {(x, d2s) : x ∈ L3, x 6= d3} ∪ {(sd, ds)}.

We define an involution on Q(1)
n for n ≥ 3 as follows. Suppose λ =

(λ1, . . . , λm) ∈ Q(1)
n ∩Qn,m, where 1 ≤ m ≤ n. Let λ(i) = (λ1, . . . , λi) for each

i ∈ [m]. Assume there exists an index i ∈ [m−1] such that λ(i) ∈ Qr−Q(1)
r for

some r ∈ [2, n − 1], with the remaining components λi+1, . . . , λm of λ form-
ing a sequence made up exclusively of the 3-tilings d3 and d2s such that all
runs of d2s are of even length. We will denote this index by i0; one can show
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that i0 is uniquely determined when it exists. Suppose λ(i0) ∈ Qr0 − Q
(1)
r0 ,

where 2 ≤ r0 < n. Let α denote the composite involution on Qn whose set of
survivors was Q(1)

n . Then apply α (in the case n = r0) to λ(i0) and append
the remaining components λi0+1, . . . , λm of λ to α(λ(i0)). We pair with λ the
resulting member of Q(1)

n , which has sign opposite that of λ.
Let Q(2)

n denote the set of survivors of this involution on Q(1)
n . Then Q(2)

2 =

Q(1)
2 and Q(2)

3 consists of the following:

(a) λ = (λ1, λ2, d3), where (λ1, λ2) ∈ Q(2)
2 ,

(b) λ = (ρ, d2s, d2s), where ρ ∈ L3,
(c) λ = (sd, ds, d2s).

Further, one can show that Q(2)
n for n ≥ 4 consists of all λ = (λ1, λ2, . . .) that

can be obtained from members of Q(2)
n or Q(3)

n by appending a sequence of
components each equal to d3 or d2s such that all runs of d2s are of even length.
Each member of Q(2)

n belongs to Qn,n, and hence has positive sign, since all
components are of length three. Thus, we have σ(Qn) = σ(Q(2)

n ) = qn for all
n ≥ 2, where qn = |Q(2)

n |. Then qn = qn−1+qn−2 for n ≥ 4, with q2 = 10 = 2F5

and q3 = 16 = 2F6, which implies qn = 2Fn+3 for all n ≥ 2 and completes the
proof. �
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