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ADAPTIVE INTEGRATION OF CONVEX FUNCTIONS
OF ONE REAL VARIABLE

Szymon Wąsowicz

Dedicated to Professor Kazimierz Nikodem on the occasion of his 70th birthday

Abstract. We present an adaptive method of approximate integration of con-
vex (as well as concave) functions based on a certain refinement of the cele-
brated Hermite–Hadamard inequality. Numerical experiments are performed
and the role of harmonic numbers is shown.

1. Introduction

A lot of work has been done in the field of the approximate integration.
Error bounds of quadratures are derived under regularity conditions of many
kinds imposed on an integrands. Adaptive methods are also still being devel-
oped. In this present paper we return to the idea of the so-called stopping
inequalities. We developed it for 3-convex functions individually in [5] or in
the cooperation with Komisarski in [3]. It should be noticed that the precur-
sors in the field were Clenshaw and Curtis [1] and Rowland and Varol [4].
Now we turn into direction of ordinary convex functions, whose concept is
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without the doubt one of the most classic ones in the whole of mathematics.
In Section 2 we propose an estimate of an approximation of an integral of a
convex function (see Proposition 1), which is based on a certain refinement
of the celebrated Hermite–Hadamard inequality. One of the research tools is
the Peano kernel. We apply our result in Section 3 to obtain the stopping
inequality (7) (which is also valid for concave functions, see Corollary 3). We
show its use for three functions which appear in many applications. In the last
Section 4 we demonstrate the role harmonic numbers play in the approximate
integration. We use them to determine the number of subdivisions of the in-
terval of integration needed to obtain an accurate enough approximation of
an integral of a reciprocal function. It is done directly and also by the use
of the asymptotics of harmonic numbers. Our computations are performed
by the computer programs created by us in the R programming language,
which were run on the author’s home computer equipped with fourth gener-
ation Intel R© CoreTM i5 processor. In tables 1 and 3 we use the accuracies
10−1, 10−2, . . . , 10−16. The higher precision is impossible to achieve on R, be-
cause it is equipped with 16-digit floating-point arithmetic. The results of our
computations are presented in three tables.

2. Certain estimate of an approximation of an integral of a convex
function

Let f : I → R be a convex function defined on a real interval I. For any
x, y ∈ I the celebrated Hermite–Hadamard inequality holds:

f
(x+ y

2

)
≤ 1

y − x

∫ y

x

f(t) dt ≤ f(x) + f(y)

2
.

Assuming that x < y and multiplying it by y − x we get

(1) (y − x)f
(x+ y

2

)
≤
∫ y

x

f(t) dt ≤ (y − x)f(x) + f(y)

2
.

A term on the left hand side is called the simple midpoint rule, while the term
on the right hand side is called the simple trapezoid rule. We now use the
inequality on the right first for x and x+y

2 , and then for x+y
2 and y. Summing
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the obtained inequalities side by side and having in mind the left inequality
of (1) we arrive at

(y − x)f
(x+ y

2

)
≤
∫ y

x

f(t) dt ≤ 1

2

[
(y − x)f(x) + f(y)

2
+ (y − x)f

(x+ y

2

)]
for any x, y ∈ I such that x < y. Denote

(2)

M[f ;x, y] = (y − x)f
(x+ y

2

)
,

T [f ;x, y] = (y − x)f(x) + f(y)

2
,

I[f ;x, y] =
∫ y

x

f(t) dt.

Then the inequality above reads as

(3) M[f ;x, y] ≤ I[f ;x, y] ≤ M[f ;x, y] + T [f ;x, y]
2

.

This is a starting point for our research. We observe that this inequality tells
us that the integral of a convex function of one real variable is closer to
the midpoint rule M[f ;x, y] than to the trapezoid rule T [f ;x, y]. Moreover,
the arithmetic mean on the right is a better approximation of the integral
than T [f ;x, y]. After a bit of school algebra from (3) we derive the following
estimate of an approximation of the integral of a convex function.

Proposition 1. Let I ⊂ R be an interval and f : I → R be a convex
function. Then

(4)
∣∣∣∣I[f ;x, y]− 3M[f ;x, y] + T [f ;x, y]

4

∣∣∣∣ ≤ T [f ;x, y]−M[f ;x, y]

4

for any x, y ∈ I such that x < y.

Indeed, the above inequality is trivially equivalent to (3).
Now we could ask whether or not the arithmetic mean of M[f ;x, y] and

M[f ;x,y]+T [f ;x,y]
2 , i.e. the term 3M[f ;x,y]+T [f ;x,y]

4 appearing in (4) is better
(lower or upper) bound of the integral I[f ;x, y]. So, we investigate which
of the inequalities
(5)

I[f ;x, y]≤ 3M[f ;x, y]+T [f ;x, y]
4

or
3M[f ;x, y]+T [f ;x, y]

4
≤I[f ;x, y]
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has a chance to hold for any convex function f : I → R and for any x, y ∈ I
such that x < y. Below we show that neither of them is true, so the in-
equality (4) constitutes the best possibility to approximate the integral in the
described context.

To find the desired counterexamples we deal with I[f ;−1, 1] and
3M[f ;−1,1]+T [f ;−1,1]

4 . In fact, we find the Peano kernel of the operator

E[f ] := I[f ;−1, 1]− 3M[f ;−1, 1] + T [f ;−1, 1]
4

,

which is the function

K(c) = E[(· − c)+]

for c ∈ [−1, 1]. However, further properties of the Peano kernel are not needed
in this paper. We would like to emphasize that the Peano kernel is an excellent
tool both to prove (this thread is absent in our paper) and to disprove the
linear inequalities of the certain kind. All functions f(x) = (x − c)+ are of
course convex. So, if we find c1 and c2 such that K(c1) > 0 and K(c2) < 0,
we will disprove both inequalities of (5). Let us compute K(c).

Following the notations from (2) we have

M[f ;−1, 1] = 2f(0), T [f ;−1, 1] = f(−1)+f(1), I[f ;−1, 1] =
∫ 1

−1
f(t) dt.

To construct our counterexample it is enough to determine K(c) for 0 ≤ c ≤ 1
only (to tell the truth it is not so hard to prove that K is an even function).
Then for f(x) = (x− c)+ = max{x− c, 0} the operators above have the form

M[f ;−1, 1] = 2(−c)+ = 0,

T [f ;−1, 1] = f(−1) + f(1) = (−1− c)+ + (1− c)+ = 1− c,

I[f ;−1, 1] =
∫ 1

−1
(t− c)+ dt =

∫ 1

c

(t− c) dt = (1− c)2

2
.

Taking this into account we compute

E[(· − c)+] = I[(· − c)+;−1, 1]−
3M[(· − c)+;−1, 1] + T [(· − c)+;−1, 1]

4

=
(1− c)2

2
− 1− c

4
=

(1− c)(1− 2c)

4
.
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Hence, for instance, K
(
1
4

)
> 0, while K

(
3
4

)
< 0, which disproves both in-

equalities (5). Then an integral of a convex function can locate on any side of
the quadrature operator 3M[f ;x,y]+T [f ;x,y]

4 .

3. Adaptive integration of convex functions
and stopping inequality

In many cases approximation of the integral by a simple quadrature rule
(e.g. by the simple midpoint or trapezoidal rules, like in this paper) is not ac-
curate enough. To improve the accuracy one resorts to the compound quadra-
tures. We divide the interval of integration, say [a, b], into n subintervals of
equal lengths: a = x0 < x1 < · · · < xn = b, where xk = a + k

n(b − a),
k = 0, 1, . . . , n. Then we define the compound midpoint rule and compound
trapezoidal rule by the formulae

(6) Mn[f ; a, b] =

n∑
k=1

M[f ;xk−1, xk] and Tn[f ; a, b] =
n∑

k=1

T [f ;xk−1, xk],

respectively. Then, since I[f ;xk−1, xk] ≈ M[f ;xk−1, xk] and the integral is
additive, we immediately get the approximation I[f ; a, b] ≈ Mn[f ; a, b] and,
mutatis mutandis, I[f ; a, b] ≈ Tn[f ; a, b]. Both compound quadratures are
Riemann integral sums for an integrable function f : [a, b] → R. Then, of
course,

I[f ; a, b] = lim
n→∞

Mn[f ; a, b] = lim
n→∞

Tn[f ; a, b],

whence

I[f ; a, b] = lim
n→∞

3Mn[f ; a, b] + Tn[f ; a, b]
4

.

Now our task is to find n large enough to ensure the desired accuracy of the ap-
proximation of the integral I[f ; a, b] by the compound quadrature
3Mn[f ;a,b]+Tn[f ;a,b]

4 . This can be achieved in many ways. It is possible to find
the error bound of this quadrature (depending on n and on the 2nd derivative
of the integrand) and prove that it tends to zero as n → ∞. We propose
another approach, which works for convex (or concave) functions, which are
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not necessarily twice differentiable. Namely, we will find the upper bound of
a difference ∣∣∣∣I[f ; a, b]− 3Mn[f ; a, b] + Tn[f ; a, b]

4

∣∣∣∣,
which depends only on the values of the integrand and the quadratures
Mn[f ; a, b], Tn[f ; a, b] and tends to zero as n → ∞. Both these methods
are called adaptive, because depending on the pre-selected accuracy of com-
putations, the number of subdivisions of the interval of integration is selected
accordingly.

Theorem 2. Let f : [a, b] → R be either a convex, or a concave function
and n ∈ N. Then∣∣∣∣I[f ; a, b]− 3Mn[f ; a, b] + Tn[f ; a, b]

4

∣∣∣∣ ≤
∣∣Tn[f ; a, b]−Mn[f ; a, b]

∣∣
4

.

Proof. First we will prove the above inequality for convex functions. In
this case, because

M[f ;xk−1, xk] ≤ T [f ;xk−1, xk], k = 1, . . . , n,

the absolute value on the right is not needed. In the subsequent steps we use
the additivity of the integral, the triangle inequality and the inequality (4) of
Proposition 1:∣∣∣∣I[f ; a, b]− 3Mn[f ; a, b] + Tn[f ; a, b]

4

∣∣∣∣
=

∣∣∣∣ n∑
k=1

(
I[f ;xk−1, xk]−

3M[f ;xk−1, xk] + T [f ;xk−1, xk]
4

)∣∣∣∣
≤

n∑
k=1

∣∣∣∣I[f ;xk−1, xk]− 3M[f ;xk−1, xk] + T [f ;xk−1, xk]
4

∣∣∣∣
≤

n∑
k=1

T [f ;xk−1, xk]−M[f ;xk−1, xk]

4

=
Tn[f ; a, b]−Mn[f ; a, b]

4
=

∣∣Tn[f ; a, b]−Mn[f ; a, b]
∣∣

4
.
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Now if f : [a, b]→ R is a concave function, we use the above part of the proof
for a convex function (−f). Then, because the absolute values are present and
the involved operators are linear, the inequality remains valid. �

The following stopping inequality is an immediate consequence of Theo-
rem 2.

Corollary 3. Let f : [a, b]→ R be either a convex, or a concave function,
n ∈ N and ε > 0. If

(7)

∣∣Tn[f ; a, b]−Mn[f ; a, b]
∣∣

4
≤ ε, (the stopping inequality)

then ∣∣∣∣I[f ; a, b]− 3Mn[f ; a, b] + Tn[f ; a, b]
4

∣∣∣∣ ≤ ε.
This corollary delivers the algorithm of the adaptive integration of convex

functions as well as concave functions. Let ε > 0 be a pre-selected accuracy
of computations. Because the left hand side of a stopping inequality (7) tends
to zero as n→∞, this inequality is fulfilled by n large enough. Then we use
this value of n to get the approximation

I[f ; a, b] ≈ 3Mn[f ; a, b] + Tn[f ; a, b]
4

with the desired accuracy ε. To find such n we gradually increase its value
starting from n = 1 until the stopping inequality is fulfilled. Then the algo-
rithm terminates.

Now it’s time for the numerical experiments. We will deal with the integrals

I =

∫ 1

0

dx

x+ 1
= ln 2 ≈ 0.69314718,

J =

∫ 1

0

e−
1
2x

2

dx =

√
π

2
erf

(√
2

2

)
≈ 0.85562439,

K =

∫ 1

0

ex
2

dx = − i
√
π

2
erf(i) ≈ 1.46265175.

Notice that on the interval [0, 1] the integrands of I and K are convex, while
the integrand of J is concave. Using the R programming language we created
the program computing the number n of subdivisions of the interval [0, 1]
needed to achieve a desired accuracy ε. The initial value was n = 1. Then
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for the pre-selected value of ε the stopping inequality (7) was checked. If the
condition was false, n was increased by 1. The program terminated when
the condition (7) was true. Then the minimal value of n needed to satisfy
the stopping inequality (7) was found. Below we present the results of our
program.

Table 1. The numbers of subdivisions needed to approxi-
mate the integrals I, J,K with the specified accuracy ε

Number of subdivisions (n)
Accuracy (ε) I J K

10−1 1 1 2

10−2 2 2 5

10−3 5 5 14

10−4 16 14 42

10−5 49 44 131

10−6 154 138 413

10−7 485 436 1304

10−8 1531 1377 4122

10−9 4842 4354 13035

10−10 15310 13768 41219

10−11 48413 43537 130343

10−12 153094 137674 412181

10−13 484123 435363 1303429

10−14 1530932 1376739 4121805

10−15 4841221 4353641 13034244

10−16 15309651 13767406 41217190

4. Harmonic numbers in the approximate integration

It turns out that in the computation of the integral∫ 1

0

dx

x+ 1
= ln 2

the harmonic numbers

Hn =

n∑
k=1

1

k
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appear both in the quadrature approximating the integral and in the stopping
inequality (7), on which we will concentrate here.

Let f : [0, 1]→ R. Following (2), (6) we compute

Mn[f ; 0, 1] =

n∑
k=1

M
[
f ;
k − 1

n
,
k

n

]
=

1

n

n∑
k=1

f

(
2k − 1

2n

)
,

Tn[f ; 0, 1] =
n∑

k=1

T
[
f ;
k − 1

n
,
k

n

]
=

1

2n

n∑
k=1

[
f

(
k − 1

n

)
+ f

(
k

n

)]
.

Applying these formulae to f(x) = 1
x+1 we arrive at

(8)

Mn[f ; 0, 1] =

n∑
k=1

2

2n+ 2k − 1
,

Tn[f ; 0, 1] =
n∑

k=1

[
1

2n+ 2k − 2
+

1

2n+ 2k

]
.

We shall determine the expression for

ε(n) :=

∣∣Tn[f ; a, b]−Mn[f ; a, b]
∣∣

4
,

where f(x) = 1
x+1 . This is the left hand side of the stopping inequality (7).

Because f is convex on [0, 1], the absolute value is not needed (cf. (3)). We
start our computations by taking into account the formulae (8):

(9)

ε(n) =
1

4

∑
1≤k≤n

[
1

2n+ 2k − 2
+

1

2n+ 2k
− 2

2n+ 2k − 1

]

=
1

4

∑
n+1≤n+k≤2n

[
1

2(n+ k)− 2
+

1

2(n+ k)
− 2

2(n+ k)− 1

]

=
1

4

∑
n+1≤i≤2n

[
1

2i− 2
+

1

2i
− 2

2i− 1

]

=
1

8

∑
n+1≤i≤2n

[
1

i− 1
+

1

i

]
− 1

2

∑
n+1≤i≤2n

1

2i− 1
.
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Consider now the first sum only:

(10)

∑
n+1≤i≤2n

1

i− 1
+

∑
n+1≤i≤2n

1

i

=
∑

n≤i−1≤2n−1

1

i− 1
+

∑
n+1≤i≤2n

1

i

=
∑

n≤j≤2n−1

1

j
+

∑
n+1≤j≤2n

1

j

=
1

n
+

∑
n+1≤j≤2n−1

1

j
+

∑
n+1≤j≤2n−1

1

j
+

1

2n

=
3

2n
+ 2

∑
n+1≤j≤2n−1

1

j

=
3

2n
+ 2

[ ∑
1≤j≤2n−1

1

j
−
∑

1≤j≤n

1

j

]

=
3

2n
+ 2(H2n−1 −Hn).

Observe that if n = 1, the above computation produces an empty sum. Then
either we accept the convention that the empty sum equals zero, or we compute
the sum directly. Finally we can see that the obtained formula works also for
n = 1.

Rearranging the second sum of (9) is a bit tricky. Below we use somewhat
less formal way. For n = 1 this sum equals 1. Let n ≥ 2.

(11)

∑
n+1≤i≤2n

1

2i− 1
=

1

2n+ 1
+

1

2n+ 3
+ · · ·+ 1

4n− 1

=

[
1

2n+ 1
+

1

2n+ 2
+

1

2n+ 3
+

1

2n+ 4
· · ·+ 1

4n− 2
+

1

4n− 1

]
−
[

1

2n+ 2
+

1

2n+ 4
+ · · ·+ 1

4n− 2

]
= H4n−1 −H2n −

1

2

(
H2n−1 −Hn

)
.
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By putting the results of (10), (11) into (9) we obtain

ε(n) =
1

8

[
3

2n
+ 2(H2n−1 −Hn)

]
− 1

2

[
H4n−1 −H2n −

1

2

(
H2n−1 −Hn

)]
.

Finally

(12) ε(n) =
3

16n
+

1

2

[
H2n−1 +H2n −H4n−1 −Hn

]
.

Combining (8) and (12) with Corollary 3 we obtain

Corollary 4. Let f(x) = 1
x+1 , ε > 0. If ε(n) ≤ ε, then∣∣∣∣I[f ; 0, 1]− 3Mn[f ; 0, 1] + Tn[f ; 0, 1]

4

∣∣∣∣ ≤ ε,
whereMn[f ; 0, 1], Tn[f ; 0, 1] are given by (8) and ε(n) is given by (12).

We are in a position to determine the number n of subdivisions of [0, 1]
needed to approximate the integral∫ 1

0

dx

x+ 1
= ln 2

with a pre-selected accuracy ε. We will do it directly by the application of the
formula (12) and also by using the asymptotics of harmonic numbers. Let us
recall the basic results going in this direction.

Due to Euler we have

lim
n→∞

(Hn − lnn) = γ,

where γ ≈ 0.5772 is the Euler-Masheroni constant. In his paper [6] from 1991
Young gave an elementary proof of the inequality

1

2(n+ 1)
≤ Hn − lnn− γ ≤ 1

2n
.

As the author writes in the paper, this result was not introduced by him, but
it was not widely known. It states that

Hn = γ + lnn+O

(
1

n

)
.
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Unfortunately, as we will see soon, the asymptotics of this approximation is not
satisfactory for our purposes. Nevertheless, there exists another aproximation
of Hn given in 1993 by DeTemple in the paper [2]. He proved the inequality

1

24(n+ 1)2
≤ Hn − ln

(
n+

1

2

)
− γ ≤ 1

24n2
,

which leads to the asymptotic formula

Hn = γ + ln
(
n+

1

2

)
+O

(
1

n2

)
,

which is considerably more precise from the previous one.
To find the asymptotic approximation of ε(n) observe that in its definition

(12) the coefficients in the parenthesis sum up to zero. Then it is enough
to replace Hn in the formula (12) either by lnn for Young’s result, or by
ln
(
n+ 1

2

)
for DeTemple’s one. Hence we arrive at two approximations:

ε(n) ≈ 3

16n
+

1

2

[
ln(2n− 1) + ln(2n)(13)

− ln(4n− 1)− lnn
]
, (Young)

ε(n) ≈ 3

16n
+

1

2

[
ln

(
2n− 1

2

)
+ ln

(
2n+

1

2

)
(14)

− ln

(
4n− 1

2

)
− ln

(
n+

1

2

)]
(DeTemple).

The first one is O
(
1
n

)
, while the second one is O

(
1
n2

)
. Table 2 presents for

selected n the values of ε(n) computed by (12), the above Young’s approx-
imation and DeTemple’s approximation, respectively. The last two columns
contain the relative errors of these approximations expressed as percentage.
The appropriate computer program was also created in R.

As we can see, Young’s approximation (13) is completely useless for our
purposes. The relative error rapidly grows as n increases. DeTemple’s ap-
proximation (14), on the other hand, seems to be reasonable and the relative
error keeps the acceptable constant level. Another program created in R com-
puted the numbers of subdivisions needed to achieve the pre-selected accuracy
ε ∈ {10−1, . . . , 10−16}. In the second column the exact formula (12) was ap-
plied to compute ε(n). In the third column DeTemple approximation of ε(n)
given by (14) was applied.
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Table 2. The values of ε(n) and its approximations

Approximation Relative error in %

n ε(n) by (12) Young DeTemple Young DeTemple
5 9.32 · 10−4 4.80 · 10−2 1.25 · 10−3 5048 34

10 2.34 · 10−4 2.45 · 10−2 3.32 · 10−4 10375 42

20 5.86 · 10−5 1.24 · 10−2 8.54 · 10−5 21038 46

50 9.37 · 10−6 4.98 · 10−3 1.39 · 10−5 53035 48

100 2.34 · 10−6 2.50 · 10−3 3.50 · 10−6 106368 49

200 5.86 · 10−7 1.25 · 10−3 8.76 · 10−7 213034 50

500 9.37 · 10−8 5.00 · 10−4 1.40 · 10−7 533034 50

1000 2.34 · 10−8 2.50 · 10−4 3.51 · 10−8 1066367 50

5000 9.38 · 10−10 5.00 · 10−5 1.41 · 10−9 5333031 50

10000 2.34 · 10−10 2.50 · 10−5 3.52 · 10−10 10666430 50

50000 9.37 · 10−12 5.00 · 10−6 1.41 · 10−11 53336330 50

100000 2.34 · 10−12 2.50 · 10−6 3.51 · 10−12 106686500 50

Table 3. The numbers of subdivisions needed to compute the integral∫ 1

0
dx

x+1
with the specified accuracy ε

Number of subdivisions (n)
Accuracy Exact DeTemple’s Relative error

(ε) (harmonic numbers) approximation in %

10−1 1 1 0

10−2 2 2 0

10−3 5 6 20

10−4 16 19 19

10−5 49 60 22

10−6 154 188 22

10−7 485 593 22

10−8 1531 1875 22

10−9 4842 5929 22

10−10 15310 18750 22

10−11 48413 59291 22

10−12 153089 187305 22

10−13 483989 587602 21

10−14 1526699 1692129 11

10−15 4712203 3090396 34

10−16 12272081 3540284 71
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Notice that the numbers in the second column of Table 3 concerning the
accuracies ε ∈ {10−12, . . . , 10−16} differ from the analogous numbers from
the second column of Table 1. This is caused by different algorithms used for
computing the contents of both tables.

The last three rows of the third column of Table 3 (DeTemple’s approxi-
mation) cannot be considered reliable, since the calculations were carried out
at the limit of accuracy of floating point arithmetic of R.

Also here we can see that the relative error is acceptable and, roughly
speaking, constant, except for the last three rows of the Table 3. Then the
properly chosen asymptotics of harmonic numbers can also be applied to es-
timate the accuracy of the approximation of our integral.
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