Annales Mathematicae Silesianae 38 (2024), no. 1, 12-17

NOTE ON AN ITERATIVE FUNCTIONAL EQUATION

Karol Baron (D), Janusz Morawiec

Dedicated to Professor Kazimierz Nikodem on his seventieth birthday

Abstract. We study the problem of solvability of the equation

$$
\varphi(x)=\int_{\Omega} g(\omega) \varphi(f(x, \omega)) P(d \omega)+F(x)
$$

where P is a probability measure on a σ-algebra of subsets of Ω, assuming Hölder continuity of F on the range of f.

Fix a probability space (Ω, \mathcal{A}, P), a separable metric space (X, ρ), a separable Banach space Y over $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ and an $\alpha \in(0,1]$.

Motivated by [1], [2] and [3] we consider solutions $\varphi: X \rightarrow Y$ of the equation

$$
\begin{equation*}
\varphi(x)=\int_{\Omega} g(\omega) \varphi(f(x, \omega)) P(d \omega)+F(x) \tag{1}
\end{equation*}
$$

assuming the following hypotheses.
Received: 31.08.2023. Accepted: 21.12.2023. Published online: 10.01.2024.
(2020) Mathematics Subject Classification: 39B12.

Key words and phrases: iterative functional equations, Hölder continuous functions.
The research was supported by the Institute of Mathematics of the University of Silesia (Iterative Functional Equations and Real Analysis program).
© 2023 The Author(s).
This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/1.
$\left(\mathrm{H}_{1}\right)$ Function f maps $X \times \Omega$ into X and $f(x, \cdot)$ is measurable for \mathcal{A} for every $x \in X$, i.e.,

$$
\{\omega \in \Omega: f(x, \omega) \in B\} \in \mathcal{A} \quad \text { for } x \in X \text { and Borel } B \subset X
$$

$\left(\mathrm{H}_{2}\right)$ Function $g: \Omega \rightarrow \mathbb{K}$ is integrable for P,

$$
\int_{\Omega}|g(\omega)|^{\frac{1}{\alpha}} \rho(f(x, \omega), x) P(d \omega)<\infty \quad \text { for } x \in X
$$

and

$$
\int_{\Omega}|g(\omega)|^{\frac{1}{\alpha}} \rho(f(x, \omega), f(z, \omega)) P(d \omega) \leq \lambda \rho(x, z) \quad \text { for } x, z \in X
$$

with a $\lambda \in(0,1)$.
For $A \subset X$ denote by $\mathcal{H}_{\alpha}(A)$ the family of all functions $F: X \rightarrow Y$ for which there is an $L \in[0, \infty)$ such that

$$
\|F(x)-F(z)\| \leq L \rho(x, z)^{\alpha} \quad \text { for } x, z \in A
$$

Integrating vector-valued functions we use the Bochner integral.
We start with the following lemma.
Lemma. Assume $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$. If $F \in \mathcal{H}_{\alpha}(f(X \times \Omega))$, then for every $x \in X$ the function $g \cdot F \circ f(x, \cdot)$ is integrable for P and the function

$$
x \mapsto \int_{\Omega} g(\omega) F(f(x, \omega)) P(d \omega), \quad x \in X
$$

is in $\mathcal{H}_{\alpha}(X)$.
Proof. Fix $x \in X$. Clearly $g \cdot F \circ f(x, \cdot)$ is measurable for \mathcal{A} and with arbitrarily fixed $z \in f(X \times \Omega)$ and an $L \in(0, \infty)$ by Jensen's inequality (see, e.g., [4, 10.2.6]) we have

$$
\begin{aligned}
\int_{\Omega} \| g(\omega) & F(f(x, \omega))\left\|P(d \omega) \leq \int_{\Omega}|g(\omega)|\right\| F(f(x, \omega))-F(f(z, \omega)) \| P(d \omega) \\
& +\int_{\Omega}|g(\omega)|\|F(f(z, \omega))-F(z)\| P(d \omega)+\|F(z)\| \int_{\Omega}|g(\omega)| P(d \omega)
\end{aligned}
$$

$$
\begin{aligned}
\leq & L\left(\int_{\Omega}|g(\omega)|^{\frac{1}{\alpha}} \rho(f(x, \omega), f(z, \omega)) P(d \omega)\right)^{\alpha} \\
& \left.+L\left(\int_{\Omega}|g(\omega)|^{\frac{1}{\alpha}} \rho(f(z, \omega), z)\right) P(d \omega)\right)^{\alpha}+\|F(z)\| \int_{\Omega}|g(\omega)| P(d \omega) \\
\leq & \left.L \lambda^{\alpha} \rho(x, z)^{\alpha}+L\left(\int_{\Omega}|g(\omega)|^{\frac{1}{\alpha}} \rho(f(z, \omega), z)\right) P(d \omega)\right)^{\alpha} \\
& +\|F(z)\| \int_{\Omega}|g(\omega)| P(d \omega)<\infty
\end{aligned}
$$

Thus $g \cdot F \circ f(x, \cdot)$ is integrable for P.
For the proof of the second part note that with an $L \in(0, \infty)$ for all $x, z \in X$ we have

$$
\begin{aligned}
& \left\|\int_{\Omega} g(\omega) F(f(x, \omega)) P(d \omega)-\int_{\Omega} g(\omega) F(f(z, \omega)) P(d \omega)\right\| \\
& \quad \leq \int_{\Omega}|g(\omega)|\|F(f(x, \omega))-F(f(z, \omega))\| P(d \omega) \\
& \quad \leq L\left(\int_{\Omega}|g(\omega)|^{\frac{1}{\alpha}} \rho(f(x, \omega), f(z, \omega)) P(d \omega)\right)^{\alpha} \leq L \lambda^{\alpha} \rho(x, z)^{\alpha}
\end{aligned}
$$

Assuming $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$ and making use of the Lemma for every $F \in$ $\mathcal{H}_{\alpha}(f(X \times \Omega))$ we define a sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ in $\mathcal{H}_{\alpha}(X)$ by

$$
F_{0}(x)=F(x), \quad F_{n}(x)=\int_{\Omega} g(\omega) F_{n-1}(f(x, \omega)) P(d \omega)
$$

for $x \in X$ and $n \in \mathbb{N}$; moreover we put

$$
\gamma=\int_{\Omega} g d P
$$

Our theorem reads.
Theorem. Assume $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$. Let $F \in \mathcal{H}_{\alpha}(f(X \times \Omega))$.
(i) If $\gamma \neq 1$, then equation (1) has exactly one solution $\varphi \in F+\mathcal{H}_{\alpha}(X)$.
(ii) If $\gamma=1$ and there is an $x_{0} \in f(X \times \Omega)$ such that $\lim _{n \rightarrow \infty} F_{n}\left(x_{0}\right)=0$, then equation (11) has a solution $\varphi \in F+\mathcal{H}_{\alpha}(X)$ unique up to an additive constant.
(iii) If $\gamma=1$ and equation (1) has a solution $\varphi \in F+\mathcal{H}_{\alpha}(X)$, then $\lim _{n \rightarrow \infty} F_{n}(x)=0$ for every $x \in f(X \times \Omega)$.

Proof. Put $X_{0}=f(X \times \Omega)$ and consider X_{0} with the metric d given by $d=\left(\left.\rho\right|_{X_{0} \times X_{0}}\right)^{\alpha}$. Then f_{0} defined as $\left.f\right|_{X_{0} \times \Omega}$ maps $X_{0} \times \Omega$ into $X_{0}, f_{0}(x, \cdot)$ is measurable for \mathcal{A} for every $x \in X_{0}$ and by Jensen's inequality

$$
\int_{\Omega}|g(\omega)| d\left(f_{0}(x, \omega), x\right) P(d \omega) \leq\left(\int_{\Omega}|g(\omega)|^{\frac{1}{\alpha}} \rho(f(x, \omega), x) P(d \omega)\right)^{\alpha}<\infty
$$

for $x \in X_{0}$, and

$$
\begin{aligned}
& \int_{\Omega}|g(\omega)| d\left(f_{0}(x, \omega), f_{0}(z, \omega)\right) P(d \omega) \\
& \quad \leq\left(\int_{\Omega}|g(\omega)|^{\frac{1}{\alpha}} \rho(f(x, \omega), f(z, \omega)) P(d \omega)\right)^{\alpha} \leq(\lambda \rho(x, z))^{\alpha}=\lambda^{\alpha} d(x, z)
\end{aligned}
$$

for $x, z \in X_{0}$.
We will now prove theses (i) and (ii).
It follows from [2, Theorem 2.3] in case (i) and from [3, Theorem 2.1] in case (ii) that there is a $\varphi_{0}: X_{0} \rightarrow Y$ such that

$$
\left\|\varphi_{0}(x)-\varphi_{0}(z)\right\| \leq L \rho(x, z)^{\alpha} \quad \text { for } x, z \in X_{0}
$$

with an $L \in[0, \infty)$ and

$$
\varphi_{0}(x)=\int_{\Omega} g(\omega) \varphi_{0}(f(x, \omega)) P(d \omega)+F(x) \quad \text { for } x \in X_{0}
$$

Using the Lemma define $\varphi: X \rightarrow Y$ by

$$
\varphi(x)=\int_{\Omega} g(\omega) \varphi_{0}(f(x, \omega)) P(d \omega)+F(x)
$$

and note that $\varphi \in F+\mathcal{H}_{\alpha}(X),\left.\varphi\right|_{X_{0}}=\varphi_{0}$, and φ solves (1).
To prove the uniqueness suppose that $\varphi_{1}, \varphi_{2} \in F+\mathcal{H}_{\alpha}(X)$ are solutions of (1). Then φ defined as $\varphi_{1}-\varphi_{2}$ is in $\mathcal{H}_{\alpha}(X)$ and solves (1) with $F=0$. Denoting by L the smallest Lipschitz-Hölder constant for φ, for all $x, z \in X$ we have

$$
\|\varphi(x)-\varphi(z)\| \leq \int_{\Omega}|g(\omega)|\|\varphi(f(x, \omega))-\varphi(f(z, \omega))\| P(d \omega) \leq L \lambda^{\alpha} \rho(x, z)^{\alpha}
$$

whence $L=0$ and φ is a constant function. In case (i) the only constant solution of (1) with $F=0$ is the zero function, whence $\varphi_{1}=\varphi_{2}$.

To get (iii) it is enough to note that if $\varphi: X \rightarrow \mathbb{R}$ is a solution of (1) in $F+\mathcal{H}_{\alpha}(X)$, then $\left.\varphi\right|_{X_{0}}$ is a Lipschitz solution of (1) with F replaced by $\left.F\right|_{X_{0}}$ and to apply [3, Theorem 2.1].

Remark. Assume $\left(\mathrm{H}_{1}\right)$ and $\left(\mathrm{H}_{2}\right)$. If $F \in \mathcal{H}_{\alpha}(f(X \times \Omega))$ and $x_{0} \in X$, then each of the following two conditions implies that $\lim _{n \rightarrow \infty} F_{n}\left(x_{0}\right)=0$:
(a) $f\left(x_{0}, \cdot\right)=x_{0}$ a.e. for P and $F\left(x_{0}\right)=0$;
(b) $F \circ f\left(\cdot, \omega_{1}\right) \circ \ldots \circ f\left(\cdot, \omega_{n}\right)\left(x_{0}\right)=0$ for every $n \in \mathbb{N}$ and $\omega_{1}, \ldots, \omega_{n} \in \Omega$.

Example. Assume that X is a separable normed space over \mathbb{K} and let $x^{*} \in X^{*},\left(p_{n}\right)_{n \in \mathbb{N}} \in[0,1]^{\mathbb{N}},\left(\gamma_{n}\right)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}},\left(a_{n}\right)_{n \in \mathbb{N}},\left(b_{n}\right)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ with

$$
\begin{gathered}
\sum_{n=1}^{\infty} p_{n}=1, \quad \sum_{n=1}^{\infty} p_{n}\left|\gamma_{n}\right|<\infty, \\
\sum_{n=1}^{\infty} p_{n}\left|\gamma_{n}\right|^{\frac{1}{\alpha}}<\infty, \quad\left\|x^{*}\right\| \sum_{n=1}^{\infty} p_{n}\left|\gamma_{n}\right|^{\frac{1}{\alpha}}\left\|a_{n}\right\|<1, \quad \sum_{n=1}^{\infty} p_{n}\left|\gamma_{n}\right|^{\frac{1}{\alpha}}\left\|b_{n}\right\|<\infty .
\end{gathered}
$$

Put

$$
\gamma=\sum_{n=1}^{\infty} p_{n} \gamma_{n}, \quad X_{0}=\operatorname{Lin}\left(\left\{a_{n}: n \in \mathbb{N}\right\} \cup\left\{b_{n}: n \in \mathbb{N}\right\}\right)
$$

and let $F \in \mathcal{H}_{\alpha}\left(X_{0}\right)$.
If $\gamma \neq 1$, then by part (i) of the Theorem (with $\Omega=\mathbb{N}, P(\{n\})=p_{n}$ for $n \in \mathbb{N}$, and $f(x, n)=\left(x^{*} x\right) a_{n}+b_{n}$ for $(x, n) \in X \times \mathbb{N}, g(n)=\gamma_{n}$ for $\left.n \in \mathbb{N}\right)$ the equation

$$
\begin{equation*}
\varphi(x)=\sum_{n=1}^{\infty} \gamma_{n} p_{n} \varphi\left(\left(x^{*} x\right) a_{n}+b_{n}\right)+F(x) \tag{2}
\end{equation*}
$$

has exactly one solution $\varphi \in F+\mathcal{H}_{\alpha}(X)$; if F is also continuous, or if F is also uniformly continuous, then so is φ.

If $\gamma=1, x^{*} b_{n}=0$ and $F\left(b_{n}\right)=0$ for every $n \in \mathbb{N}$, then by part (ii) of the Theorem and the Remark (cf. condition (b)) equation (2) has a solution $\varphi \in F+\mathcal{H}_{\alpha}(X)$ unique up to an additive constant; if F is also continuous, or if F is also uniformly continuous, then so is φ.

References

[1] K. Baron, Note on two iterative functional equations, Grazer Math. Ber. 364 (2023), 1-6.
[2] K. Baron, J. Morawiec, Lipschitzian solutions to linear iterative equations, Publ. Math. Debrecen 89 (2016), no. 3, 277-285. DOI: 10.5486/PMD.2016.7514
[3] K. Baron, J. Morawiec, Lipschitzian solutions to linear iterative equations revisited, Aequationes Math. 91 (2017), no. 1, 161-167. DOI: 10.1007/s00010-016-0455-6
[4] R.M. Dudley, Real Analysis and Probability, Cambridge Studies in Advanced Mathematics 74, Cambridge University Press, Cambridge, 2002.

Institute of Mathematics
University of Silesia
Bankowa 14
PL-40-007 Katowice
Poland
e-mail: karol.baron@us.edu.pl
e-mail: janusz.morawiec@us.edu.pl

