

Annales Mathematicae Silesianae **38** (2024), no. 1, 12–17 DOI: 10.2478/amsil-2023-0031

NOTE ON AN ITERATIVE FUNCTIONAL EQUATION

KAROL BARON^D, JANUSZ MORAWIEC

Dedicated to Professor Kazimierz Nikodem on his seventieth birthday

Abstract. We study the problem of solvability of the equation

$$\varphi(x) = \int_{\Omega} g(\omega)\varphi(f(x,\omega))P(d\omega) + F(x),$$

where P is a probability measure on a σ -algebra of subsets of Ω , assuming Hölder continuity of F on the range of f.

Fix a probability space (Ω, \mathcal{A}, P) , a separable metric space (X, ρ) , a separable Banach space Y over $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ and an $\alpha \in (0, 1]$.

Motivated by [1], [2] and [3] we consider solutions $\varphi \colon X \to Y$ of the equation

(1)
$$\varphi(x) = \int_{\Omega} g(\omega)\varphi(f(x,\omega))P(d\omega) + F(x)$$

assuming the following hypotheses.

Received: 31.08.2023. Accepted: 21.12.2023. Published online: 10.01.2024. (2020) Mathematics Subject Classification: 39B12.

Key words and phrases: iterative functional equations, Hölder continuous functions.

The research was supported by the Institute of Mathematics of the University of Silesia (Iterative Functional Equations and Real Analysis program).

^{©2023} The Author(s).

This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY (http://creativecommons.org/licenses/by/4.0/).

(H₁) Function f maps $X \times \Omega$ into X and $f(x, \cdot)$ is measurable for \mathcal{A} for every $x \in X$, i.e.,

$$\{\omega \in \Omega \colon f(x,\omega) \in B\} \in \mathcal{A} \text{ for } x \in X \text{ and Borel } B \subset X.$$

(H₂) Function $g: \Omega \to \mathbb{K}$ is integrable for P,

$$\int_{\Omega} |g(\omega)|^{\frac{1}{\alpha}} \rho(f(x,\omega), x) P(d\omega) < \infty \quad \text{ for } x \in X$$

and

$$\int_{\Omega} |g(\omega)|^{\frac{1}{\alpha}} \rho(f(x,\omega), f(z,\omega)) P(d\omega) \le \lambda \rho(x,z) \quad \text{for } x, z \in X$$

with a $\lambda \in (0, 1)$.

For $A \subset X$ denote by $\mathcal{H}_{\alpha}(A)$ the family of all functions $F: X \to Y$ for which there is an $L \in [0, \infty)$ such that

$$||F(x) - F(z)|| \le L\rho(x, z)^{\alpha} \quad \text{for } x, z \in A.$$

Integrating vector–valued functions we use the Bochner integral. We start with the following lemma.

LEMMA. Assume (H₁) and (H₂). If $F \in \mathcal{H}_{\alpha}(f(X \times \Omega))$, then for every $x \in X$ the function $g \cdot F \circ f(x, \cdot)$ is integrable for P and the function

$$x \mapsto \int_{\Omega} g(\omega) F(f(x,\omega)) P(d\omega), \quad x \in X,$$

is in $\mathcal{H}_{\alpha}(X)$.

PROOF. Fix $x \in X$. Clearly $g \cdot F \circ f(x, \cdot)$ is measurable for \mathcal{A} and with arbitrarily fixed $z \in f(X \times \Omega)$ and an $L \in (0, \infty)$ by Jensen's inequality (see, e.g., [4, 10.2.6]) we have

$$\begin{split} \int_{\Omega} \|g(\omega)F\big(f(x,\omega)\big)\|P(d\omega) &\leq \int_{\Omega} |g(\omega)|\|F\big(f(x,\omega)\big) - F\big(f(z,\omega)\big)\|P(d\omega) \\ &+ \int_{\Omega} |g(\omega)|\|F\big(f(z,\omega)\big) - F(z)\|P(d\omega) + \|F(z)\|\int_{\Omega} |g(\omega)|P(d\omega)| \end{split}$$

$$\begin{split} &\leq L\bigg(\int_{\Omega}|g(\omega)|^{\frac{1}{\alpha}}\rho\big(f(x,\omega),f(z,\omega)\big)P(d\omega)\bigg)^{\alpha} \\ &+L\left(\int_{\Omega}|g(\omega)|^{\frac{1}{\alpha}}\rho\big(f(z,\omega),z)\big)P(d\omega)\bigg)^{\alpha}+\|F(z)\|\int_{\Omega}|g(\omega)|P(d\omega) \\ &\leq L\lambda^{\alpha}\rho(x,z)^{\alpha}+L\bigg(\int_{\Omega}|g(\omega)|^{\frac{1}{\alpha}}\rho\big(f(z,\omega),z)\big)P(d\omega)\bigg)^{\alpha} \\ &+\|F(z)\|\int_{\Omega}|g(\omega)|P(d\omega)<\infty. \end{split}$$

Thus $g \cdot F \circ f(x, \cdot)$ is integrable for *P*.

For the proof of the second part note that with an $L \in (0,\infty)$ for all $x, z \in X$ we have

$$\begin{split} \left\| \int_{\Omega} g(\omega) F(f(x,\omega)) P(d\omega) - \int_{\Omega} g(\omega) F(f(z,\omega)) P(d\omega) \right\| \\ &\leq \int_{\Omega} |g(\omega)| \|F(f(x,\omega)) - F(f(z,\omega))\| P(d\omega) \\ &\leq L \bigg(\int_{\Omega} |g(\omega)|^{\frac{1}{\alpha}} \rho(f(x,\omega), f(z,\omega)) P(d\omega) \bigg)^{\alpha} \leq L \lambda^{\alpha} \rho(x,z)^{\alpha}. \end{split}$$

Assuming (H₁) and (H₂) and making use of the Lemma for every $F \in \mathcal{H}_{\alpha}(f(X \times \Omega))$ we define a sequence $(F_n)_{n \in \mathbb{N}}$ in $\mathcal{H}_{\alpha}(X)$ by

$$F_0(x) = F(x), \quad F_n(x) = \int_{\Omega} g(\omega) F_{n-1}(f(x,\omega)) P(d\omega)$$

for $x \in X$ and $n \in \mathbb{N}$; moreover we put

$$\gamma = \int_{\Omega} g dP$$

Our theorem reads.

THEOREM. Assume (H₁) and (H₂). Let $F \in \mathcal{H}_{\alpha}(f(X \times \Omega))$.

- (i) If $\gamma \neq 1$, then equation (1) has exactly one solution $\varphi \in F + \mathcal{H}_{\alpha}(X)$.
- (ii) If $\gamma = 1$ and there is an $x_0 \in f(X \times \Omega)$ such that $\lim_{n \to \infty} F_n(x_0) = 0$, then equation (1) has a solution $\varphi \in F + \mathcal{H}_{\alpha}(X)$ unique up to an additive constant.
- (iii) If $\gamma = 1$ and equation (1) has a solution $\varphi \in F + \mathcal{H}_{\alpha}(X)$, then $\lim_{n\to\infty} F_n(x) = 0$ for every $x \in f(X \times \Omega)$.

PROOF. Put $X_0 = f(X \times \Omega)$ and consider X_0 with the metric d given by $d = (\rho|_{X_0 \times X_0})^{\alpha}$. Then f_0 defined as $f|_{X_0 \times \Omega}$ maps $X_0 \times \Omega$ into $X_0, f_0(x, \cdot)$ is measurable for \mathcal{A} for every $x \in X_0$ and by Jensen's inequality

$$\int_{\Omega} |g(\omega)| d\big(f_0(x,\omega),x\big) P(d\omega) \le \left(\int_{\Omega} |g(\omega)|^{\frac{1}{\alpha}} \rho\big(f(x,\omega),x\big) P(d\omega)\right)^{\alpha} < \infty$$

for $x \in X_0$, and

$$\begin{split} \int_{\Omega} |g(\omega)| d\big(f_0(x,\omega), f_0(z,\omega)\big) P(d\omega) \\ &\leq \Big(\int_{\Omega} |g(\omega)|^{\frac{1}{\alpha}} \rho\big(f(x,\omega), f(z,\omega)\big) P(d\omega)\Big)^{\alpha} \leq \big(\lambda \rho(x,z)\big)^{\alpha} = \lambda^{\alpha} d(x,z) \end{split}$$

for $x, z \in X_0$.

We will now prove theses (i) and (ii).

It follows from [2, Theorem 2.3] in case (i) and from [3, Theorem 2.1] in case (ii) that there is a $\varphi_0: X_0 \to Y$ such that

$$\|\varphi_0(x) - \varphi_0(z)\| \le L\rho(x, z)^{\alpha} \text{ for } x, z \in X_0$$

with an $L \in [0, \infty)$ and

$$\varphi_0(x) = \int_{\Omega} g(\omega)\varphi_0(f(x,\omega))P(d\omega) + F(x) \text{ for } x \in X_0$$

Using the Lemma define $\varphi \colon X \to Y$ by

$$\varphi(x) = \int_{\Omega} g(\omega)\varphi_0(f(x,\omega))P(d\omega) + F(x)$$

and note that $\varphi \in F + \mathcal{H}_{\alpha}(X)$, $\varphi|_{X_0} = \varphi_0$, and φ solves (1).

To prove the uniqueness suppose that $\varphi_1, \varphi_2 \in F + \mathcal{H}_{\alpha}(X)$ are solutions of (1). Then φ defined as $\varphi_1 - \varphi_2$ is in $\mathcal{H}_{\alpha}(X)$ and solves (1) with F = 0. Denoting by L the smallest Lipschitz-Hölder constant for φ , for all $x, z \in X$ we have

$$\|\varphi(x) - \varphi(z)\| \le \int_{\Omega} |g(\omega)| \|\varphi(f(x,\omega)) - \varphi(f(z,\omega))\| P(d\omega) \le L\lambda^{\alpha}\rho(x,z)^{\alpha},$$

whence L = 0 and φ is a constant function. In case (i) the only constant solution of (1) with F = 0 is the zero function, whence $\varphi_1 = \varphi_2$.

To get (iii) it is enough to note that if $\varphi \colon X \to \mathbb{R}$ is a solution of (1) in $F + \mathcal{H}_{\alpha}(X)$, then $\varphi|_{X_0}$ is a Lipschitz solution of (1) with F replaced by $F|_{X_0}$ and to apply [3, Theorem 2.1].

REMARK. Assume (H₁) and (H₂). If $F \in \mathcal{H}_{\alpha}(f(X \times \Omega))$ and $x_0 \in X$, then each of the following two conditions implies that $\lim_{n\to\infty} F_n(x_0) = 0$: (a) $f(x_0, \cdot) = x_0$ a.e. for P and $F(x_0) = 0$; (b) $F \circ f(\cdot, \omega_1) \circ \ldots \circ f(\cdot, \omega_n)(x_0) = 0$ for every $n \in \mathbb{N}$ and $\omega_1, \ldots, \omega_n \in \Omega$.

EXAMPLE. Assume that X is a separable normed space over \mathbb{K} and let $x^* \in X^*$, $(p_n)_{n \in \mathbb{N}} \in [0,1]^{\mathbb{N}}$, $(\gamma_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$, $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ with

$$\sum_{n=1}^{\infty} p_n = 1, \quad \sum_{n=1}^{\infty} p_n |\gamma_n| < \infty,$$
$$\sum_{n=1}^{\infty} p_n |\gamma_n|^{\frac{1}{\alpha}} < \infty, \quad \|x^*\| \sum_{n=1}^{\infty} p_n |\gamma_n|^{\frac{1}{\alpha}} \|a_n\| < 1, \quad \sum_{n=1}^{\infty} p_n |\gamma_n|^{\frac{1}{\alpha}} \|b_n\| < \infty.$$

Put

$$\gamma = \sum_{n=1}^{\infty} p_n \gamma_n, \quad X_0 = \operatorname{Lin}(\{a_n : n \in \mathbb{N}\} \cup \{b_n : n \in \mathbb{N}\})$$

and let $F \in \mathcal{H}_{\alpha}(X_0)$.

If $\gamma \neq 1$, then by part (i) of the Theorem (with $\Omega = \mathbb{N}$, $P(\{n\}) = p_n$ for $n \in \mathbb{N}$, and $f(x,n) = (x^*x)a_n + b_n$ for $(x,n) \in X \times \mathbb{N}$, $g(n) = \gamma_n$ for $n \in \mathbb{N}$) the equation

(2)
$$\varphi(x) = \sum_{n=1}^{\infty} \gamma_n p_n \varphi\big((x^* x)a_n + b_n\big) + F(x)$$

has exactly one solution $\varphi \in F + \mathcal{H}_{\alpha}(X)$; if F is also continuous, or if F is also uniformly continuous, then so is φ .

If $\gamma = 1$, $x^*b_n = 0$ and $F(b_n) = 0$ for every $n \in \mathbb{N}$, then by part (ii) of the Theorem and the Remark (cf. condition (b)) equation (2) has a solution $\varphi \in F + \mathcal{H}_{\alpha}(X)$ unique up to an additive constant; if F is also continuous, or if F is also uniformly continuous, then so is φ .

References

- K. Baron, Note on two iterative functional equations, Grazer Math. Ber. 364 (2023), 1–6.
- K. Baron, J. Morawiec, Lipschitzian solutions to linear iterative equations, Publ. Math. Debrecen 89 (2016), no. 3, 277–285. DOI: 10.5486/PMD.2016.7514
- [3] K. Baron, J. Morawiec, Lipschitzian solutions to linear iterative equations revisited, Aequationes Math. 91 (2017), no. 1, 161–167. DOI: 10.1007/s00010-016-0455-6
- [4] R.M. Dudley, *Real Analysis and Probability*, Cambridge Studies in Advanced Mathematics 74, Cambridge University Press, Cambridge, 2002.

INSTITUTE OF MATHEMATICS UNIVERSITY OF SILESIA BANKOWA 14 PL-40-007 KATOWICE POLAND e-mail: karol.baron@us.edu.pl e-mail: janusz.morawiec@us.edu.pl