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CLOSURE OPERATIONS
ON INTUITIONISTIC LINEAR ALGEBRAS

Y.L.Tenkeu Jeufack , E.R. Alomo Temgoua,
O.A. Heubo-Kwegna

Abstract. In this paper, we introduce the notions of radical filters and ex-
tended filters of Intuitionistic Linear algebras (IL-algebras for short) and give
some of their properties. The notion of closure operation on an IL-algebra is
also introduced as well as the study of some of their main properties. The
radical of filters and extended filters are examples of closure operations among
several others provided. The class of stable closure operations on an IL-algebra
L is used to study the unifying properties of some subclasses of the lattice of
filters of L. In particular, we obtain that for a stable closure operation c on
an IL-algebra, the collection of c-closed elements of its lattice of filters forms
a complete Heyting algebra. Hyperarchimedean IL-algebras are also charac-
terized using closure operations. It is shown that the image of a semi-prime
closure operation on an IL-algebra is isomorphic to a quotient IL-algebra. Some
properties of the quotients induced by closure operations on an IL-algebra are
explored.

1. Introduction

In commutative ring theory and lattice theory, closure operations have
been thoroughly investigated in literature [4, 5, 9, 18, 22]. Girard in 1987 [7]
introduced linear logic whose algebraic counterpart is the notion of Intuition-
istic Linear Algebra (IL-algebra for short) initiated by Troelstra (see [20]).
In Galatos et al. [6], IL-algebras are viewed as FLe-algebras. For properties
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regarding IL-algebras the reader may refer to [2, 20]. One vital difference be-
tween IL-algebras and commutative residuated lattices is that the top of the
lattice and the monoidal identity are different in the former structure, whereas
these two coincide in the latter one.

Filter theory plays a crucial role in the study of algebraic structures and
associated logics. The filter theory of IL-algebras has been introduced in [2, 10]
and some important results have been obtained. Recently, Tenkeu and Ngan-
teu have characterized the filter generated by a subset and show that the
lattice of filters of an IL-algebra is algebraic, pseudocomplemented and is
endowed with a structure of Heyting algebra [19]. Given that several con-
cepts of commutative rings theory have their analogs in the theory of ordered
structures, the ring theory notion of closure operation was transported to the
MV-algebra context in [8] and relations between closure operations and BL-
algebras were studied in [14]. In the same order of idea, we consider closure
operations on IL-algebras for a common treatment of classes of IL-algebras.

Closure operations play an important role in (fuzzy) topological spaces
(see [13]) and form interesting tools for constructing topological spaces, e.g
in [21] Stone’s topology for pseudocomplemented lattices is investigated using
closure operations on the lattice of filters. In ring theory, there are several
examples of closure operations used to characterize different classes of rings
and some of their algebraic properties [5]. Similarly, in [8], examples of closure
operations on MV-algebras such as radical of ideals have been provided along
with their main properties as well as some characterizations of classes of MV-
algebras using closure operations. In this framework, we consider the radical
of a filter as the intersection of all maximal filters containing it. The radical
of a filter satisfies the three axioms of a closure operation: it is extensive,
non-decreasing, and idempotent. This motivates the introduction of closure
operations on IL-algebras. Extended filters are also introduced in Section 2
along with some preliminary results to be used in later sections.

In Section 3, the notion of closure operation on an IL-algebra L is intro-
duced and defined as a map on the lattice of filters of L that is extensive,
non-decreasing, and idempotent. We provide several examples of closure op-
erations on IL-algebras and their properties including the investigation of
properties of the class of stable closure operations. It is shown that if the set
of filters of an IL-algebra L is linearly ordered by inclusion, then every closure
operation on this lattice is stable. We prove that the set of closed filters with
stable closure operations forms a complete Heyting algebra. Characterization
of Hyperarchimedean IL-algebras in terms of closure operations is also proven.
Note that these precedent results generalize those existing in IL-algebra sub-
classes such as MV-algebras, BL-algebras and residuated lattices.

In Section 4, We turn our attention to semi-prime closure operations on IL-
algebras and their relationships with homomorphisms. We extend some results
from [14] to IL-algebras. We study the first isomorphism theorem induced by
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closure operations on IL-algebras and the properties of quotients induced by
closure operations on IL-algebras. We also explore some relationship between
closure operations on L and its powers LX where X is an arbitrary non-
empty set.

2. Preliminaries

For convenience, we gather in this section some definitions and results on
IL-algebras from [12, 19, 20] and provide some preliminary results to be used
in later sections.

2.1. Definition and some algebraic properties of IL-algebras

Definition 2.1 ([11, 20]). An Intuitionistic Linear algebra is an algebraic
system L = (L,∧,∨, ∗,→, e,⊥,>) with four binary operations ∧,∨, ∗ and →
and three constants ⊥, e and > such that:
(1) (L,∧,∨,⊥,>) is a bounded lattice.
(2) (L, ∗, e) is a commutative monoid with unit e.
(3) For any x, y, z ∈ L, x ∗ y ≤ z if and only if x ≤ y → z (residuation

property).

In what follows, L denotes any IL-algebra (L,∧,∨, ∗,→, e,⊥,>).

Example 2.2 ([11, Example 2]). Let L7 = {⊥, a, b, c, d, e,>}, where the
lattice diagram is given in Figure 1, ∗ and → tables are given below:

>

e

a

d

b
c

⊥

Figure 1. Lattice diagram

∗ ⊥ a b c d e >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ a d c d a >
b ⊥ d b c d b >
c ⊥ c c d c c >
d ⊥ d d c d d >
e ⊥ a b c d e >
> ⊥ > > > > > >

→ ⊥ a b c d e >
⊥ > > > > > > >
a ⊥ 1 b c b e >
b ⊥ a e c a e >
c ⊥ c c e c e >
d ⊥ e e c e e >
e ⊥ a b c d e >
> ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ >
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The IL-algebra L7 is not a residuated lattice, since we have b ∧ c < b ∗ c.

Example 2.3 ([12, Example 10]). Consider L = [−1, 2], where

x ∨ y = max{x, y}, x ∧ y = min{x, y}, x→ y = 1− (x ∗ (1− y))

and

x∗y =


max{0, x+ y − 1} when x, y ∈ [0, 1],

min{x, y} when x+ y ≤ 1 and at least one of x, y 6∈ [0, 1],

max{x, y} when x+ y > 1 and at least one of x, y 6∈ [0, 1].

Then (L,∧,∨, ∗,→,⊥, e,>) is an IL-algebra with ⊥ = −1,> = 2 and e = 1.

Example 2.4 ([12]). If (L,∨,∧, ∗,→, e,⊥,>) is an IL-algebra and X is
a non-empty set, then the set LX := {f : X → L | f is a map} becomes an
IL-algebra (LX ,∨,∧, ∗,→,⊥, e,>) with the operations defined pointwise and
⊥,>, e : X → L are the constant functions associated with ⊥,>, e.

The ordering ≤ and negation ¬ in L are defined as follows: for all x and y
in L:

x ≤ y iff x ∧ y = x (or equivalently, iff x ∨ y = y), ¬x = x→ ⊥.

Let n ≥ 1 be an integer. For any x ∈ L, define xn = xn−1 ∗ x and x0 = e.
In the case e = >, L is a commutative residuated lattice.
The following theorem provides some known rules in IL-algebras.

Theorem 2.5 ([10, 12, 20]). Let L be an IL-algebra, I a non-empty set
and x, y, x1, y1, yi (i ∈ I), z ∈ L, then the following statements hold:

(c1) x ∗ (y∨ z) = (x ∗ y)∨ (x ∗ z), if
∨
i∈I
yi exists, then x ∗ (

∨
i∈I
yi) =

∨
i∈I

(x ∗ yi),
(c2) ⊥ → ⊥ = >,
(c3) > ∗ > = >,
(c4) If x, y ≤ e, then x ∗ y ≤ x ∧ y,
(c5) If e ≤ x, y, then x ∨ y ≤ x ∗ y,
(c6) (x→ y) ∗ (y → z) ≤ (x→ z),
(c7) e→ x = x,
(c8) If x ≤ y, x1 ≤ y1, then x ∗ x1 ≤ y ∗ y1 and y → x1 ≤ x→ y1,
(c9) x→ (y → z) = (x ∗ y)→ z,

(c10) x ∗ (x→ y) ≤ y,
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(c11) e ≤ x→ x,
(c12) (z → x) ∧ (z → y) = z → (x ∧ y),
(c13) (x→ z) ∧ (y → z) = (x ∨ y)→ z.

Some known useful inequalities on IL-algebras are presented in the follow-
ing proposition.

Proposition 2.6 ([19]). Let L be an IL-algebra. For any positive integers,
n,m ≥ 1 and g, h, k, h1, . . . , hn ∈ L, the following statements hold:

(c14) (g ∧ e) ∨ [(h ∧ e) ∗ (k ∧ e)] ≥ ((g ∧ e) ∨ (h ∧ e)) ∗ ((g ∧ e) ∨ (k ∧ e)),
(c15) (g∧e)∨[(h1∧e)∗. . .∗(hn∧e)] ≥ [(g∧e)∨(h1∧e)]∗. . .∗[(g∧e)∨(hn∧e)],
(c16) (g ∧ e) ∨ ((h ∧ e)n) ≥ ((g ∧ e) ∨ (h ∧ e))n,
(c17) (g ∧ e)n ∨ (h ∧ e)m ≥ ((g ∧ e) ∨ (h ∧ e))mn.

Definition 2.7 ([12]). Let L be an IL-algebra. A subset F of L is called
a filter if the following conditions hold:
(1) e ∈ F , for any x, y ∈ F , x ∗ y and x ∧ y ∈ F ,
(2) if x ≤ y and x ∈ F, then y ∈ F .

Proposition 2.8. Let L be an IL-algebra. A subset F of L is a filter if
and only if
(1) e ∈ F ,
(2) if x, y ∈ F , then (x ∧ e) ∗ (y ∧ e) ∈ F ,
(3) if x ≤ y and x ∈ F , then y ∈ F .

Proof. Using (x∧ e) ∗ (y ∧ e) ≤ x ∗ y, x∧ y we obtain the desired equiva-
lence. �

Definition 2.9 ([12]). Let L be an IL-algebra. A subset D of L, is called
a deductive system if the following conditions are satisfied for all x, y ∈ L:
(1) e ∈ D,
(2) if x, x→ y ∈ D, then y ∈ D,
(3) if e ≤ x, then x ∈ D.

It is easy to see that every filter of L is a deductive system. A filter F of L
is called proper if F 6= L, in that case ⊥ 6∈ F ; it is calledmaximal if F is proper
and F is not contained in another proper filter of L. An IL-algebra is called a
local IL-algebra when it contains a unique maximal filter. For each non-empty
subset S of L, the filter generated by S denoted 〈S〉 is the intersection of all
filters of L containing S. A filter F of L is finitely generated if F = 〈S〉, where
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S is a finite subset of L. If {Fi}i∈I is a family of filters of L, we define

∧i∈IFi = ∩i∈IFi and ∨i∈I Fi = 〈(∪i∈IFi)〉.

We denote by F (L) the set of all filters of L and F(L) the algebra (F (L);
∧,∨, 〈e〉, L) where F1 ∧ F2 = F1 ∩ F2, F1 ∨ F2 = 〈F1 ∪ F2〉.

Example 2.10.
(1) For the IL-algebra L7, the set F = {d, a, b, e,>} is the only maximal filter.
(2) Let L be the IL-algebra of Example 2.3, for any positive integer n ≥ 2,

set Fn = [ 1
n + 1

2 , 2]. Then Fn is a filter of L.

Lemma 2.11 ([19]). Let F be a filter of L and a, b ∈ L. If (a∧e)∨(b∧e) ∈ F ,
then 〈F ∪ {a}〉 ∩ 〈F ∪ {b}〉 = F .

Proposition 2.12 ([19]). If F ∈ F (L), then the following conditions are
equivalent:
(i) If F = F1 ∩ F2 with F1, F2 ∈ F (L), then F = F1 or F = F2.
(ii) If a, b ∈ L with (a ∧ e) ∨ (b ∧ e) ∈ F , then a ∈ F or b ∈ F .
(iii) If F1 ∩ F2 ⊆ F with F1, F2 ∈ F (L), then F1 ⊆ F or F2 ⊆ F .

Definition 2.13. Let L be an IL-algebra. A filter F of L is called a prime
filter if F 6= L and F satisfies one of the conditions of Proposition 2.12.

Example 2.14. Consider the IL-algebra L7. Then F1 = {d, a, b, e,>},
F2 = {a, e,>} and F3 = {b, e,>} are prime filters of L7.

It is easy to check that an arbitrary intersection of filters of L is a filter.
According to [19], we have the following two propositions.

Proposition 2.15 ([19]). Let L be an IL-algebra, F, F1, F2 ∈ F (L), a, b ∈
L and S ⊆ L, S 6= ∅. Then the following statements hold:
(1) 〈a ∧ e〉 = 〈a〉 = {x ∈ L : (a ∧ e)n ≤ x ∧ e for some n ≥ 1},
(2) 〈S〉 = {x ∈ L : (s1∧e)∗. . .∗(sn∧e) ≤ x∧e, for some s1, . . . , sn ∈ S, n ≥ 1},
(3) F1∨F2 = 〈F1∪F2〉 = {x ∈ L : ∃f1 ∈ F1, f2 ∈ F2, (f1∧e)∗(f2∧e) ≤ x∧e},
(4) 〈F ∪ {a}〉 = {x ∈ L : ∃f ∈ F, n ≥ 1, (f ∧ e) ∗ (a ∧ e)n ≤ x ∧ e},
(5) 〈a〉 ∩ 〈b〉 = 〈(a ∧ e) ∨ (b ∧ e)〉.

Recall that a Heyting algebra (H,∧,∨, 0, 1,→) is a lattice with least ele-
ment 0 and greatest element 1 such that, for all a, b, x ∈ H, x ∧ a ≤ b if and
only if x ≤ a→ b. Heyting algebra is necessarily distributive ([16]).



Closure operations on Intuitionistic Linear algebras

Proposition 2.16 ([16, Lemma 1.1]). The following standard properties
hold in Heyting algebras:
(c18) b ≤ c implies a→ b ≤ a→ c,
(c19) a→ (b→ c) = (a ∧ b)→ c,
(c20) a→ (b ∧ c) = (a→ b) ∧ (a→ c).

Proposition 2.17 ([19]). Let L be an IL-algebra. The algebra (F (L),∧,∨,
→, 〈e〉) is a complete Heyting algebra, where for all F1, F2 ∈ F (L),

F1 ∧ F2 = F1 ∩ F2, F1 ∨ F2 = 〈F1 ∪ F2〉,

F1 → F2 = {x ∈ L : F1 ∩ 〈x〉 ⊆ F2}.

To end this subsection, we state some properties of homomorphisms of IL-
algebras and some relationships between homomorphisms of IL-algebras and
filters.

Definition 2.18. Let L1,L2 be two IL-algebras. A function h : L1 → L2

is said to be an IL-homomorphism (or simply, homomorphism) if h(xγy) =
h(x)γh(y), for all x, y ∈ L1 and γ ∈ {∗,→,∧,∨} and h(cL1) = cL2 , for any
c ∈ {⊥,>, e}.

If L1 = L2, then h is called an endomorphism of IL-algebra.
If h is a homorphism of IL-algebras, then the set

coker(h) = {x ∈ L1 | h(e1) ≤ h(x)}

is called the cokernel of h (called in [12] kernel of h).

If h : L1 → L2 is an IL- homomorphism, then one can easily show that

h(¬x) = ¬h(x) and if x ≤ y, then h(x) ≤ h(y) for all x, y ∈ L1.

It was claimed in [11], and the proof is stated in [19], that for any filter F
of L, the binary relation Θ(F ) defined by

Θ(F ) := {(x, y) ∈ L2 | x→ y, y → x ∈ F}

is a congruence relation on L. For any a ∈ L, let [a]F be the congruence class
of a. If we denote by L

F the quotient set {[a]F | a ∈ L}, then L
F becomes an IL-

algebra with the natural operations induced by those of L and the correspon-
dence πF : L → L

Θ(F ) , x 7→ [x]Θ(F ) is a surjective IL-homomorphism ([12]).
One can check that coker(πF ) ⊆ F and F = 〈[e]Θ(F )〉 (see [19]).
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Proposition 2.19. Let h : L1 → L2 be a homomorphism of IL-algebras,
F ∈ F (L2), G ∈ F (L1). Set h−1(F ) = {x ∈ L1 | h(x) ∈ F} and h(G) =
{h(x) | x ∈ G}. Then:
(1) h−1(F ) ∈ F (L1) and coker(h) ⊆ h−1(F ),
(2) h(G) is a filter of L2 if h is surjective.

Proof. The proof is trivial. �

Example 2.20. We consider the IL-algebra L7 and define the map h : L7→
L7, h(a) = b, h(b) = a and for all x ∈ L7 \ {a, b}, h(x) = x. It is easy
to check that h is an endomorphism of L7. It is clear that h is injective
and surjective, hence bijective. F (L7) = {F1 = {a, e,>}, F2 = {b, e,>},
F3 = {a, b, d,>}, F4 = {e,>}, F5 = L}. We have h(F1) = F2, h(F3) = F3 and
coker(h) = {e,>}.

2.2. Radical of filters in IL-algebras
Radicals have arisen from structural investigations in rings, but later they

infiltrated into various branches of algebras as well as in topology and in re-
lational structures, in particular on MV-algebras and residuated lattices, but
in the context of ideals. Radicals provide structure theorems for ordered alge-
braic structures which are semi-simple and provide also a context for studying
and comparing classes of algebras via closure operations. We introduce and
state some useful properties of radical in IL-algebras in the context of filters,
since there is a bijective correspondence between filters and congruences on
IL-algebras [11, 19]. We denote by max(L) the set of all maximal filters of L.

Definition 2.21. Let F ∈ F (L), the radical of F denoted Rad(F ) is
defined as follows: If F = L, then Rad(F ) = L, if F 6= L, then Rad(F ) is the
intersection of all maximal filters of L contained it, that is

Rad(F ) := ∩{G : G ∈ max(L) and F ⊆ G}.

Clearly Rad(F ) is a filter of L for any F ∈ F (L).

Proposition 2.22. Let L be an IL-algebra and F,G ∈ F (L). Then the
following statements hold:
(1) F ⊆ Rad(F ),
(2) if F ⊆ G, then Rad(F ) ⊆ Rad(G),
(3) Rad(Rad(F )) = Rad(F ),
(4) Rad(F ) ∩Rad(G) = Rad(F ∩G),
(5) if F ∈ max(L), then Rad(F ) = F .
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Proof. (1) and (5) are obvious.
(2) Let F,G ∈ F (L) such that F ⊆ G. Let us show that Rad(F ) ⊆ Rad(G).

If F = L or G = L we are done; since Rad(L) = L. Assume that F and G
are proper filters. Let M be maximal filter of L such that G ⊆ M , then
F ⊆ G ⊆ M and Rad(F ) ⊆ M . Therefore Rad(F ) ⊆ ∩{M ∈ max(L) | G ⊆
M} = Rad(G).

For (3), if F = L we are done. Assume that F 6= L, let us show that
Rad(Rad(F )) = Rad(F ). Set

J = {G ∈ max(L) | Rad(F ) ⊆ G} and K = {G ∈ max(L) | F ⊆ G}.

Let G ∈ K, then by definition Rad(F ) ⊆ G, so G ∈ J , hence K ⊆ J . Let
G ∈ J , then G ∈ max(L) and Rad(F ) ⊆ G, since F ⊆ Rad(F ) we have F ⊆ G
and G ∈ K, so J ⊆ K. Therefore J = K. By definition of Rad(Rad(F )) and
J = K we have Rad(Rad(F )) = Rad(F ).

(4) Let F,G ∈ F (L). Since F ∩G ⊆ F,G, we have Rad(F ∩G) ⊆ Rad(F )∩
Rad(G) by using (2). Recall that each maximal filter in L is a prime filter
([19, Corollary 3.21]). Let M be a maximal filter containing F ∩ G, then by
the primness of M (Proposition 2.12), we have F ⊆M or G ⊆M . If F ⊆M ,
then F ⊆ Rad(F ) ⊆M and Rad(F )∩Rad(G) ⊆M . If G ⊆M , then a similar
argument shows that Rad(F ) ∩ Rad(G) ⊆ M ; since M is arbitrary chosen,
we get Rad(F ) ∩ Rad(G) ⊆ M for all maximal filter containing F ∩ G, that
is Rad(F ) ∩Rad(G) ⊆ Rad(F ∩G). Hence the desired equality holds. �

2.3. Extended filters in IL-algebras

Extended filters were investigated on residuated lattices in [15, 17]. In [17],
it is proved that, given a commutative residuated lattice L, the set of extended
filters on L forms a Heyting algebra. In this subsection, we introduce and
investigate some properties of extended filters on IL-algebras. Later, using
closure operations, we will show that one can derive some properties of the
collection of extended filters. Given a fixed non-empty subset B of L, for any
filter F of L, set

EF (B) = {x ∈ L | (x ∧ e) ∨ (y ∧ e) ∈ F, for all y ∈ B}.

The set EF (B) is called extended filter of F relative to B.

Lemma 2.23. For two non-empty subsets B and C of an IL-algebra L and
any filter F of L, if B ⊆ C, then EF (C) ⊆ EF (B).

Proof. Clear. �
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Theorem 2.24. For any non-empty subset B of L and F ∈F (L), EF (B) =
EF (〈B〉) where 〈B〉 is the filter generated by B.

Proof. By Lemma 2.23 we have EF (〈B〉) ⊆ EF (B). It remains to show
that EF (B) ⊆ EF (〈B〉). Let x ∈ EF (B), we will show that x ∈ EF (〈B〉). Let
y ∈ 〈B〉, then by (2) of Proposition 2.15 there are y1, . . . , yn ∈ B such that
(y∧e) ≥ (y1∧e)∗. . .∗(yn∧e); since x ∈ EF (B), we have (x∧e)∨(yi∧e) ∈ F , for
1 ≤ i ≤ n. Using (c15) we have (x∧e)∨(y∧e) ≥ (x∧e)∨[(y1∧e)∗. . .∗(yn∧e)] ≥
[(x∧e)∨(y1∧e)]∗. . .∗[(x∧e)∨(yn∧e)] ∈ F , we deduce that (x∧e)∨(y∧e) ∈ F ;
hence x ∈ EF (〈B〉). �

Proposition 2.25. Let L be an IL-algebra, F,G ∈ F (L), B a non-
empty set and → defined on F (L) as above, then in the Heyting algebra
(F (L),∧,∨,→, 〈e〉, L) the following statements hold:
(1) EF (B) = 〈B〉 → F ∈ F (L),
(2) F ⊆ EF (B),
(3) if F is a prime filter, then EF (B) is a prime filter,
(4) if F ⊆ G, then EF (B) ⊆ EG(B),
(5) EF (B) ∩ EG(B) = EF∩G(B),
(6) EEF (B)(B) = EF (B).

Proof. Recall that EF (B) = EF (〈B〉) and 〈B〉 → F = {x ∈ L | 〈x〉 ∩
〈B〉 ⊆ F}.

(1) Let x ∈ EF (B), we will show that x ∈ 〈B〉 → F , i.e 〈x〉 ∩ 〈B〉 ⊆ F .
Let t ∈ 〈x〉 ∩ 〈B〉, then there are n,m ≥ 1 and b1, . . . , bm ∈ B such that,
using (c15) and (c16), one obtains

(t ∧ e) ≥ (x ∧ e)n ∨ [(b1 ∧ e) ∗ . . . ∗ (bm ∧ e)]

≥ [(x ∧ e)n ∨ (b1 ∧ e)] ∗ . . . ∗ [(x ∧ e)n ∨ (bm ∧ e)]

≥ [(x ∧ e) ∨ (b1 ∧ e)]n ∗ . . . ∗ [(x ∧ e) ∨ (bm ∧ e)]n.

Since (x ∧ e) ∨ (bi ∧ e) ∈ F , 1 ≤ i ≤ m, we deduce that t ∈ F . So
EF (B) ⊆ 〈B〉 → F . Let x ∈ 〈B〉 → F . We will show that x ∈ EF (B). Let
y ∈ B, we will show that (x ∧ e) ∨ (y ∧ e) ∈ F . Since 〈x〉 ∩ 〈B〉 ⊆ F , we
get (x ∧ e) ∨ (y ∧ e) ∈ 〈x〉 ∩ 〈B〉, so x ∈ EF (B). Hence 〈B〉 → F ⊆ EF (B).
Therefore EF (B) = 〈B〉 → F . Since EF (B) = 〈B〉 → F , we deduce by
Lemma 3.26 in [19] that EF (B) ∈ F (L).

(2) It is easy to see that F ⊆ EF (B).
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(3) Assume that F is a prime filter. Assume that (x∧e)∨ (y∧e) ∈ EF (B).
We show that x or y belongs to EF (B). We have

〈B〉 ∩ 〈(x ∧ e) ∨ (y ∧ e)〉

= 〈B〉 ∩ 〈x ∧ e〉 ∩ 〈y ∧ e〉 (by (5) and (1) of Proposition 2.15)

= [〈B〉 ∩ (〈(x ∧ e)] ∩ [〈B〉 ∩ 〈(y ∧ e)〉] ⊆ F.

Since F is a prime filter, by (iii) of Proposition 2.12 〈B〉 ∩ 〈x ∧ e〉 ⊆ F or
〈B〉∩ 〈y∧ e〉 ⊆ F , and hence x ∈ 〈B〉 → F or y ∈ 〈B〉 → F . Therefore EF (B)
is a prime filter.

(4) By using (c18), we are done.

(5) (EF (B) ∩EG(B)) = (〈B〉 → F ) ∩ (〈B〉 → G)
(c20)
= 〈B〉 → (F ∩G)

(def)
=

EF∩G(B).

(6) EEF (B)(B) = 〈B〉 → (〈B〉 → F )
(c19)
= (〈B〉 ∩ 〈B〉)→ F = EF (B). �

Corollary 2.26. EF (B) = ∩
x∈B

(F : x), where

(F : x) = {y ∈ L | (x ∧ e) ∨ (y ∧ e) ∈ F}.

3. Closure operations on the lattice of filters of IL-algebras

Closure operations have intensively been used to characterize rings, for
instance, many classifications of rings have been obtained using v-closure, star
closure and semi-star closure operations on the lattice of ideals of rings ([4,
5]). Some of the concerned rings among others are for example, completely
integrally closed rings, Noetherian rings, Dedekind rings, and Krull rings.
Recently, a similar work on MV-algebras has been carried out by O.A. Heubo-
Kwegna and J.B. Nganou [8] who characterized hyperarchimedean MV-alge-
bras. Since MV-algebras, BL-algebras, commutative residuated lattices form
subclasses of IL-algebras and these classes of algebras have commutative ring
counterpart notions, it motivates us to consider closure operations on IL-
algebras as a map on the set of the lattice of filters of IL-algebras.
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3.1. Definition, examples and construction of closure operations

Definition 3.1. Let L be an IL-algebra and F (L) be the set of all filters
of L. A closure operation on F (L) is a map c : F (L) → F (L), F 7→ F c

satisfying the following conditions where F c is used in place of c(F ):
(CO-1) F ⊆ F c (extension),
(CO-2) F c = (F c)c (idempotence),
(CO-3) If F ⊆ G, then F c ⊆ Gc(order-preservation).

A filter is called c-closed if F c = F . It is immediate that F c is c-closed for
any filter of L. The set of c-closed filters is denoted F (L)c.

A typical reason that a closure operation is studied is often that the closed-
ness of certain classes of filters (ideals) is related (and often equivalent) to the
ordered algebraic structures having desired properties.

Definition 3.2.
(1) A closure operation c is called proper closure operation on F (L) if c(F ) 6=

L for all proper filter F .
(2) Two filters F and G of L are called co-maximal if F ∨G = L.

We proceed to give examples of closure operations.

Example 3.3.
(1) The identity map as well as the constant map that sends every filter to L

are closure operations.
(2) From (1), (2) and (3) of Proposition 2.22, for every IL-algebra L, Rad is

a nontrivial example of closure operation on L.
(3) By using (1), (3), (5) and (7) of Proposition 2.25, for any non-empty

subset B of L, the map cB : F 7→ EF (B) is a closure operation.
(4) Let F be a subset of F (L) that is closed under (arbitrary) intersection.

For each filter F of L, let

F c =
⋂
{G | G ∈ F , F ⊂ G}.

A similar argument used in (6) of [8, Example 3.2] shows that c is a closure
operation on L. It is clear that F is the set of all c-closed filters of L.

(5) For any filter G of L, the map cG : F (L) → F (L), F 7→ F ∨ G, where
F ∨G = 〈F ∪G〉 is a closure operation (easy to check).

(6) For any filter F , set F ∗ = {x ∈ L | for any y ∈ F, (x ∧ e) ∨ (y ∧ e) = e}.
The correspondence F 7→ F ∗∗ is a closure operation on L.

By [19, Proposition 3.31], F (L) is a pseudocomplemented distributive
lattice, and using Theorem I of [21] we get that the concerned correspon-
dence is a closure operation on F (L).
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We state some properties that follow from the axiomatic definition of clo-
sure operations.

Proposition 3.4. Let L be an IL-algebra, c be a closure operation, {Fα |
α ∈ Λ} be a nonempty set of filters of L and F be a filter of L.
(i) F c is the intersection of all c-closed filters that contain F , that is

(3.1) F c =
⋂
{G ∈ F (L)c | F ⊆ G}.

(ii) If every Fα is c-closed, so is ∩αFα.
(iii) ∩αF cα is c-closed.
(iv) ( ∨

α∈Λ
F cα)c = ( ∨

α∈Λ
Fα)c, where ∨

α∈Λ
Fα is the filter generated by ∪

α∈Λ
Fα.

Proof. Since F (L) is a lattice, it follows from Proposition 7.2 of [3]. �

Corollary 3.5 ([3]). For every IL-algebra L, there is a one-to-one cor-
respondence between the closure operations on F (L) and the subsets of F (L)
that are closed under arbitrary intersections.

Corollary 3.6.
(1) If F and G are two co-maximal filters of L and c is a proper closure

operation on L, then F c and Gc are comaximal.
(2) If c is a proper closure operation and F is a maximal filter of L, then

c(F ) = F .

Proof. (1) Clear.
(2) Let c be a proper closure operation and F a maximal filter, then by

extensivity F ⊆ F c and since F is maximal, we have F c = F or F c = L. Since
c is proper we get c(F ) = F . �

Corollary 3.7. Let L be an IL-algebra, ∅ 6= B ⊆ L and {Fα | α ∈ Λ}
be a family of filters on L. Let Rad : F 7→ Rad(F ) and cB : F 7→ EF (B) as
above. Then:
(1) (i) Rad(

⋂
α∈ΛRad(Fα)) =

⋂
α∈ΛRad(Fα),

(ii) Rad(
∨
αRad(Fα)) = Rad(

∨
Fα).

(2) (i) E ⋂
α∈Λ

EFα(B)(B) = E ⋂
α∈Λ

Fα(B),

(ii) E ∨
α∈Λ

(EFα(B))(B) = E ∨
α∈Λ

Fα(B).

Definition 3.8 ([5, p.8]). A closure operation c on F (L) is said to be of
finite type if F c :=

⋃
{Jc | J is a finitely generated filter such that J ⊆ F}.
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We end this subsection by giving further characterizations of closure op-
erations.

Lemma 3.9. Given a collection {cλ | λ ∈ Λ} of closure operations on
F (L), if we denote by c its infirmum, we have

F c =
⋂
λ∈Λ

F cλ .

Proof. Since each F cλ is a filter, F c is also a filter as an arbitrary inter-
section of filters. The extensive and order preserving properties follow from
that of cλ, λ ∈ Λ. The idempotent property follows because rewriting the
intersection using (3.1), we have⋂

λ∈Λ

F cλ =
⋂
λ∈Λ

⋂
G∈F (L)cλ

F⊆G

G =
⋂
F⊆G

⋂
G∈F (L)cλ

λ∈Λ

G =
⋂
F⊆G
G∈C

G

where C =
⋃
λ∈Λ F (L)cλ , that is the closure operation generated by the set

C =
⋃
λ∈Λ F (L)cλ , namely c. �

Let B ⊆ L, B 6= ∅, and x ∈ B, set

Cx(F ) = {y ∈ L | (y ∧ e) ∨ (x ∧ e) ∈ F},

then one can see that EF (B) = ∩
x∈B

(Cx(F )), hence CB = inf{Cx : x ∈ B}.
One of very productive ways to construct closure operations on an IL-

algebra L is by using homomorphisms from L to other IL-algebras.

Proposition 3.10 (Transport of closure operations). Let φ : L1 → L2 be
an IL-homomorphism and d a closure operation on F (L2). The map

c : F 7→ F c := φ−1(〈φ(F )〉d)

is a closure operation on L1 where 〈φ(F )〉 is the filter of L2 generated by φ(F ).
Moreover, if d is of finite type, then so is c.

Proof. Let F ∈ F (L1), since 〈φ(F )〉d is a filter of L2 and φ a homomor-
phism of IL-algebras, F c is a filter of L1(using Proposition 2.19). Extension
follows from F ⊆ φ−1(φ(F )) ⊆ φ−1(〈φ(F )〉d) and order preservation follows
from that of d. For idempotence, clearly g ∈ (F c)c implies φ(g) ∈ 〈φ(F c)〉d,
but φ(F c) = φ(φ−1(〈φ(F )〉d)) ⊆ 〈φ(F )〉d; hence φ(F c) ⊆ 〈φ(F )〉d. Then
〈φ(F c)〉d ⊆ 〈φ(F )〉d)d = 〈φ(F )〉d. So φ(g) ∈ 〈φ(F c)〉d ⊆ 〈φ(F )〉d. Thus



Closure operations on Intuitionistic Linear algebras

g ∈ φ−1(〈φ(F )〉d), i.e g ∈ F c. Thus F cc ⊆ F c and F cc = F c. Hence c is
a closure operation on F (L1).

Suppose that d is of finite type. We will show that c is of finite type, i.e.

F c =
⋃
{Gc | G ⊆ F,G is finitely generated}.

For every y ∈ 〈φ(F )〉, there are y1, . . . , yn ∈ φ(F ) such that (y ∧ e) ≥ (y1 ∧
e) ∗ . . . ∗ (yn ∧ e) and there are xi ∈ F, yi = φ(xi), i = 1, . . . , n. So there exists
a finitely generated filter G of L1 contained in F namely G = 〈{x1, . . . , xn}〉
such that y ∈ 〈φ(G)〉. Let z ∈ F c, then φ(z) ∈ 〈φ(F )〉d, so there is a finitely
generated filter H ⊆ 〈φ(F )〉 such that φ(z) ∈ Hd. Let H = 〈{h1, . . . , hm}〉.
Each hi = si for some si ∈ F and each si is contained in a finitely generated
filter Fi ⊆ F ; hence φ(z) ∈ Hd ⊆ 〈φ(F1)∪ . . .∪φ(Fm)〉d, so that z ∈ (φ(F1)∨
φ(F2) ∨ . . . ∨ φ(Fm))c. Since F1 ∨ . . . ∨ Fm is finitely generated, c is of finite
type. �

Proposition 3.11.
(1) If L2 = L1/F , where F is a filter of L1, the closure operation induced

by the quotient map π : L→ L/F and by the closure operation d on L/F
is the closure operation c defined on F (L) whose c-filters are the filters
containing F that project to the d-filters of L/F .

(2) If we have a whole family of IL-algebras Sα, closure operations dα and ho-
momorphisms φα : L→ Sα, we can take the infirmum of the corresponding
closure cα, obtaining

F c :=
⋂
α∈Λ

φ−1
α (〈φα(F )〉dα)

which is a closure operation.

Proof. (1) It follows from Proposition 3.10.
(2) Follows from Lemma 3.9 and Proposition 3.10. �

3.2. Relations between some subclasses of F(L) and stable closure
operations

We consider now the closure operations that preserve finite meets in the
lattice F (L).

Definition 3.12 ([8]). We call a closure operation c on L stable if for all
filters F,G of L, (F ∩G)c = F c ∩Gc.
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One should observe that as (F ∩G)c ⊆ F c∩Gc for any closure operation c,
showing that c is stable only requires the inclusion F c ∩ Gc ⊆ (F ∩ G)c to
hold.

Example 3.13.
(1) Obviously, the identity map as well as the constant map that sends every

filter to L are stable closure operations.
(2) By (4) of Proposition 2.22, the closure operation Rad is stable.
(3) By (5) of Proposition 2.25 for any ∅ 6= B ⊆ L, the closure cB: cB(F ) =

EF (B) is a stable closure operation.
(4) Since F (L) is a distributive lattice, one has that CG : F 7→ F ∨ G is

a stable closure operation.
(5) Since L7 is finite all its filters are principal and we have F (L7) = {〈e〉, 〈a〉,
〈b〉, 〈d〉, L}. Let ci : F (L7)→ F (L7) be defined as follows:
(5.1) c1(L) = L, c1(〈e〉) = 〈e〉 and c1(〈x〉) = L, x ∈ {a, b, d}. Then c1 is

a closure operation that is not stable, since c1(〈a〉) ∩ c1(〈b〉) = L 6=
c1(〈a〉 ∩ 〈b〉) = 〈e〉.

(5.2) c2(L) = L, c2(〈x〉) = 〈d〉, x ∈ {a, b, d} and c2(〈e〉) = 〈e〉. Then c2 is
a closure operation that is not stable, since c2(〈a〉)∩ c2(〈b〉) = 〈d〉 6=
c2(〈a〉 ∩ 〈b〉) = 〈e〉.

(6) A two element Boolean algebra L2 is a bounded commutative residuated
lattice with x∗y = x∧y, x→ y = ¬x∨y for any x, y ∈ L2 = {0, 1}, and so
an IL-algebra in which e = 1. Let L3 be the subalgebra of L7, with L3 =
{⊥, e,>}. Following Cayley tabular of L7, one can extract that of L3. Then
L6 = L2×L3 is an IL-algebra as product of IL-algebras L2 and L3. Setting
> = (1,>), e = (1, e), d = (0,>), b = (0, e), a = (1, 0) and ⊥ = (0,⊥). We
have L6 = {⊥, a, b, e, d,>} and F (L6) = {〈e〉, 〈a〉, 〈b〉, 〈⊥〉 = L6}, where
L6 is given by Figure 2 below.

> = (1,>)

d = (0,>)

⊥ = (0,⊥)

b = (0, e)

e = (1, e)

b = (1,⊥)

A

Figure 2. L6

> = (1,>)

d = (0,>)

⊥ = (0,⊥)

b = (0, e)

e = (1, e)

a = (1,⊥)

>

e

⊥

A

Figure 3. L3

We define the operation c on F (L6) by c(〈e〉) = 〈e〉 and c(〈a〉) =
c(〈b〉) = L. Then c is a closure operation on F (L) that is not stable.
Indeed: 〈e〉 = c(〈a〉 ∩ 〈b〉) 6= c(〈a〉) ∩ c(〈b〉) = L.
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We can use stable closure operations c to derive properties of c-closed
elements of F (L).

Theorem 3.14. Let c : F (L) → F (L) be a stable closure operation, and
c(L) = {F ∈ F (L) | F c = F}. For any F,G ∈ F (L), set F ∨c G = (F ∨ G)c

and F c ∩ Gc = (F ∩ G)c. Then (c(L),∩,∨c, 〈e〉c, L) is a complete Heyting
algebra.

Proof. Let F,G ∈ c(L), then c(F ) = F and c(G) = G and F → G ⊆
c(F → G). Since F ∩ (F → G) ⊆ G, using order preservation and stable
property, we have c(F ) ∩ c(F → G) ⊆ c(G), so residuation property yields
c(F → G) ⊆ c(F ) → c(G). Since c(F ) = F and c(G) = G we have c(F →
G) ⊆ F → G ⊆ c(F → G) by extensivity of c; therefore c(F → G) = F → G.

Since c is a stable closure operation, one can show that c(L) is stable with
∩ and ∨. Since (F (L),∨,∩,→ 〈e〉, L) is a complete Heyting algebra, it is easy
to see that c(L) is complete by using (ii) of Proposition 3.4. �

Corollary 3.15. Let L be an IL-algebra and B ⊆ L, B 6= ∅.
(i) The class of extended filters relative to B (cB(F (L)),∨cB ,∩,→, 〈B〉 →
〈e〉, L) is a complete Heyting algebra with least (resp. greatest) element
〈B〉 → 〈e〉 (resp. L).

(ii) The class of radical filters of L, (Rad(F (L));∨Rad,∩, Rad(〈e〉), L) is
a complete Heyting algebra with least (resp. greatest) element Rad(〈e〉)
(resp. L).

Proof. (i) Let B ⊆ L,B 6= ∅. Let us show that 〈B〉 → 〈e〉 is the least
element of cB(F (L)). We have 〈B〉 → 〈e〉 = cB(〈e〉) ∈ cB(F (L)). Let 〈B〉 →
F ∈ cB(F (L)), with F ∈ F (L). Since 〈e〉 ⊆ F , from (c18) 〈B〉 → 〈e〉 ⊆ 〈B〉 →
F . Therefore, 〈B〉 → 〈e〉 is the least element of cB(F (L)). Clearly L is the
greatest element of cB(F (L)). Since cB is a stable closure operation on F (L),
from Theorem 3.14, we are done.

(ii) Clearly Rad(〈e〉) (resp. L) is the least (resp. the greatest) element of
Rad(F (L)) and the latter is a complete Heyting algebra by Theorem 3.14. �

Given an IL-algebra L, we recall that C(F (L)) is the set of closure op-
erations on F (L). We define on C(F (L)) the binary relation � by c � c′ if
F c ⊆ F c′ for each filter F of L.

Proposition 3.16. Let L be an IL-algebra such that F (L) is linearly or-
dered by inclusion. Then every closure operation on L is stable.

Proof. Let c be a closure operation on L and F,G ∈ F (L). Then F ⊆ G
or G ⊆ F . Assume F ⊆ G, then F c ⊆ Gc and (F ∩G)c = F c = F c ∩Gc. �
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The Proposition 3.16 is verified for local IL-algebras.
Semi-prime closure operation on the lattice of ideal in a ring R is a closure

operation such that c(I).c(J) ⊆ c(I.J) for any two ideals I and J . We observe
that, since F (L) is a Heyting algebra, semi-prime and stable closure operations
on F (L) coincide.

Remark 3.17. Let PC(L) denote the set of all proper closure operations
on F (L). Note that for every c ∈ PC(L), every filter F and maximal filter
M containing F , we have F c ⊆ M . Hence F c ⊆ Rad(F ) and c � Rad. As
observed above, both Id and Rad belong to PC(L) and are its minimum
and maximum element respectively. Indeed, it is clear that the meet and join
of proper closure operations are proper. Therefore, (PC(L),�) is a bounded
sublattice of (C(F (L)),�).

In the following, we prove that every closure operation induces a quotient
that preserves stability.

Proposition 3.18. Let L be an IL-algebra and F be a filter of L. Then
every closure operation c on F (L) induces a closure operation c on F (L/F ).
Moreover, if c is stable, then c is stable.

Proof. For any filter G of L containing F , define (G/F )c = Gc

F . That c
satisfies (CO1, CO2,CO3) is immediate from the fact that c satisfies the same
conditions. In addition, if c is stable, then for any filters G,K containing F ,
(G/F ∩K/F )c = ((G ∩K)/F )c = (G ∩K)c/F = (Gc ∩Kc)/F = (Gc/F ) ∩
(Kc/F ) = (G/F )c ∩ (K/F )c. �

Corollary 3.19. For any filter G containing F , the following statement
holds for γ ∈ {Rad, cB | B ⊆ L,B 6= ∅}:

γ

(
G1

F
∩ G2

F

)
= γ

(
G1 ∩G2

F

)
=
γ(G1)

F
∩ γ(G2)

F
.

To end this section, we provide some characterizations of maximal filters
of IL-algebras.

Theorem 3.20. If F is a proper filter of L, then the following statements
are equivalent:
(1) F ∈ max(L).
(2) For any x 6∈ F , there are f ∈ F , n ∈ N, n ≥ 1 such that

(f ∧ e) ∗ (x ∧ e)n = ⊥.
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Proof. Assume that F is a maximal filter of L. Let x ∈ L \ F . Since F
is a maximal filter, we have 〈F ∪ {x}〉 = L, so ⊥ ∈ 〈F ∪ {x}〉 and by (4) of
Proposition 2.15 there exist n ≥ 1, f ∈ F such that (x ∧ e)n ∗ (f ∧ e) ≤ ⊥.
Hence (f ∧ e) ∗ (x ∧ e)n = ⊥.

Conversely, assume that (2) holds. We will show that F is a maximal filter.
Assume that there is a proper filter E of L such that F ⊆ E and F 6= E.
Then there exists an x ∈ E such that x 6∈ F . By hypothesis, there exist f ∈ F ,
n ≥ 1 such that (f ∧ e) ∗ (x ∧ e)n = ⊥. Since f, x ∈ E, it follows that ⊥ ∈ E.
Therefore E = L which is a contradiction. Hence F ∈ max(L). �

Corollary 3.21. If F is a proper filter of L, then the following are equiv-
alent:
(1) F ∈ max(L).
(2) For any x ∈ L, x 6∈ F if and only if ¬((x ∧ e)n) ∈ F for some n ∈ N.

Proof. Assume that F is a maximal filter. Let x ∈ L \ F . By (2) of
Theorem 3.20, there exist f ∈ F , n ≥ 1 such that (f ∧ e) ∗ (x ∧ e)n = ⊥;
therefore f ∧e ≤ (x∧e)n → ⊥ = ¬((x∧e)n)) (by residuation property). Since
f ∈ F , we deduce that ¬((x ∧ e)n) ∈ F .

Conversely, assume that ¬((x∧e)n) ∈ F for some n ∈ N. Let us show that
x 6∈ F . By contradiction, assume that x ∈ F , then (x ∧ e)n ∗ [¬((x ∧ e)n] =
⊥ ∈ F , which is not possible. Therefore x 6∈ F and we are done.

Conversely, assume that condition (2) holds for F . Let us show that F is
maximal. Let x ∈ L \ F , then by assumption there exists n ∈ N such that
¬[(x ∧ e)n] ∈ F . Set f = (x ∧ e)n → ⊥, then (f ∧ e) ∗ (x ∧ e)n = ⊥. Thus, by
Theorem 3.20 we conclude that F is a maximal filter. �

We end this section by showing that, one can characterize some classes of
IL-algebras using closure operations.

Definition 3.22. Let L be an IL-algebra. An element a ∈ L is called
archimedean if it satisfies the condition: there exists n ≥ 1 such that
(¬[(a ∧ e)n] ∧ e) ∨ (a ∧ e) = e. An IL-algebra is called hyperarchimedean if
all its elements are archimedean.

Example 3.23 ([12, Example 1]). Let L5 with L5 = {⊥, a, b, e,>}. The
lattice diagram is given in Figure 4, and ∗ and → tables are given below:
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>

ba

e

⊥

Figure 4. L5

∗ ⊥ a b e >
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
a ⊥ > > a >
b ⊥ > > b >
e ⊥ a b e >
> ⊥ > > > >

→ ⊥ a b e >
⊥ > > > > >
a ⊥ e ⊥ ⊥ >
b ⊥ ⊥ e ⊥ >
e ⊥ a b e >
> ⊥ ⊥ ⊥ ⊥ >

This IL-algebra is not a residuated lattice, since a ∗ b = > � a ∧ b = ⊥.
An easy calculation shows that L is hyperarchimedean.

Let L6 = L2 × L3 be the above IL-algebra. Then max(L) = Spec(L).
Let Specc(L) = F (L)c ∩ Spec(L), i.e. the set of all c-closed prime filters

of L. Note that the identity closure and the radical closure are both proper. It
is straightforward to see that the prime spectra of the identity closure opera-
tion and the radical closure operation are Spec(L) and max(L), respectively.
We can characterize hyperarchimedean IL-algebras using the prime spectra of
proper closure operations.

Theorem 3.24 ([1, Theorem 50]). For a residuated lattice L the following
conditions are equivalent:
(1) L is hyperarchimedean.
(2) Spec(L) = max(L).

Proposition 3.25. If the IL-algebra L is hyperarchimedean, then

Spec(L) = max(L).

Proof. Assume that L is hyperarchimedean. Since Max(L) ⊆ Spec(L),
we only have to show that Spec(L) ⊆ max(L). Let P be a prime filter of
L, we will show that P is a maximal filter. Let x ∈ L. Assume that x 6∈ F
(since F is proper). Since L is hyperarchimedean, there is n ≥ 1 such that
(x ∧ e) ∨ (¬[(x ∧ e)n] ∧ e) = e ∈ F . Then ¬[(x ∧ e)n] ∈ F by the primness
of F . Conversely, assume that ¬[(x ∧ e)n] ∈ F . We will show that x 6∈ F . By
contradiction, suppose that x ∈ F , then (x ∧ e)n ∗ [¬(x ∧ e)n] = (x ∧ e)n ∗
((x∧e)n → ⊥) ≤ ⊥ ∈ F , which is not possible, because F is proper, therefore
x 6∈ F . Hence F is maximal by Corollary 3.21. Thus Spec(L) = max(L). �

The converse of Proposition 3.25 is an open question.
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Theorem 3.26. Let L be an IL-algebra. We consider the following asser-
tions:
(i) L is hyperarchimedean.
(ii) Specc(L) = max(L) for every proper closure operation c on F (L).
(iii) The only proper closure operation on F (L) is the identity closure.
Then
(1) (a) (i) ⇒ (ii),

(b) (i) ⇒ (iii).
(2) If L is a commutative residuated lattice, then (i) ⇔ (ii) ⇔ (iii).

Proof. (1) (i) ⇒ (ii). Assume that L is hyperarchimedean and let c be
a proper closure operation on F (L). Then for each maximal filter M , M ⊆
M c 6= L. It follows that M = M c and Max(L) ⊆ Specc(L) ⊆ Spec(L).
Since L is hyperarchimedean, by Proposition 3.25 Spec(L) = max(L). Thus
Specc(L) = max(L).

(i) ⇒ (iii). Assume that L is hyperarchimedean. Let c be a proper clo-
sure operation on L and P a prime filter, then P ⊆ P c. Since L is hyper-
archimedean and P prime, then P is maximal and P c = P . That is P is
c-closed. Let F be a filter of L, then F = ∩{P ∈ Spec(L) | F ⊆ P} (see [19,
Corollary 3.20 (ii)]). By (ii) of Proposition 3.4 we have c(F ) = F . Thus c is
the identity closure.

(2) We only need to show that (ii) ⇒ (i) and (iii) ⇒ (i).
(ii)⇒ (i). Assume that Specc(L) = max(L) for every proper closure opera-

tion c on L. Consider the identity closure Id, which is proper and also verified
to have for spectrum Spec(L). Therefore SpecId(L) = Spec(L) = max(L)
and L is hyperarchimedean by Theorem 3.24.

(iii) ⇒ (i). Assume that L is not hyperarchimedean, then by Theorem
3.24 L has a prime filter that is not maximal. Consider the closure Rad on
L, then Rad is clearly proper and Rad(P ) is equal to the unique maximal
filter containing P . In particular, Rad(P ) 6= P and Rad is not the identity
closure. �

Proposition 3.27.
(1) If an IL-algebra L is hyperarchimedean, then every filter of L is Rad-

closed.
(2) A commutative residuated lattice L is hyperarchimedean if and only if all

filters of L are Rad-closed.

Proof. (1) Recall that any filter F of L verifies F = ∩{P ∈ Spec(L) |
F ⊆ P} (a) (see [19]). Assume that L is hyperarchimedean, then Spec(L) =
max(L). By using (a) we get F = Rad(F ).

(2) Assume that L is a commutative residuated lattice. By (1) it is clear
that if L is hyperarchimedean, then each filter of L is Rad-closed.
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Conversely, assume that each filter of L is Rad closed. Let P be a prime
filter on L. Since P is a prime filter, by Proposition 2.12 there exists a unique
maximal filter M such that P ⊆M . By definition of Rad we have Rad(P ) =
M and by assumption Rad(P ) = P , hence M = P and each prime filter is
maximal. Therefore Spec(L) = max(L), by Theorem 3.24, we deduce that L
is hyperarchimedean. �

4. Semi-prime closure operations and IL-algebras homomorphisms

In this section, we study relationship between IL-algebras and semi-prime
closure operations in the sense of [14, 20]. We investigate the properties of
closure operations and relationship between semi-prime closure operations
and homomorphisms on IL-algebras. The obtained results extend some of the
existing ones on some subclasses of IL-algebras such as BL-algebras.

Definition 4.1 ([20]). Let L be an IL-algebra, a map c : L→ L is called
a semi-prime closure operation if for all x, y ∈ L it satisfies the following
conditions:
(co1) x ≤ c(x) (extensivity),
(co2) if x ≤ y, then c(x) ≤ c(y) (order-preserving),
(co3) c(c(x)) = c(x) (idempotence),
(co4) c(x) ∗ c(y) ≤ c(x ∗ y) (semi-prime).

Proposition 4.2. Let c : L→ L be a semi-prime closure operation on L.
Then the following assertions hold:
(1) c(c(x) ∗ c(y)) = c(x ∗ y), and c(L) = {c(x) | x ∈ L} is closed under ∧

and →.
(2) For any x ∈ L, c(x) ∗ c(e) = c(x).
(3) The subset D = {x ∈ L | c(x) ≥ c(e)} of L is a deductive system. In

addition, if x ≤ y and x ∈ D, then y ∈ D and D is stable with ∗.
(4) The subset A = {x ∈ L : c(x ∧ e) ≥ c(e)} is a filter of L.

Proof. (1) See [20, Lemma 8.7].
(2) By (co1), e ≤ c(e), using (c8) we have c(x) ∗ e = c(x) ≤ c(x) ∗ c(e) ≤

c(x ∗ e) = c(x), therefore c(x) = c(e) ∗ c(x).
(3) We have c(e) ≤ c(e), so e ∈ D. Let x, y ∈ L be such that x, x→ y ∈ D,

we will show that y ∈ D. By (c10) we have x ∗ (x → y) ≤ y, by (co4) we
have c(x) ∗ c(x→ y) ≤ c(x ∗ (x→ y)) ≤ c(y); since c(x), c(x→ y) ≥ c(e) and
c(e)∗c(e) = c(e), we deduce that c(e) ≤ c(y). Hence y ∈ D. Assume that x ∈ D
and x ≤ y, then c(e) ≤ c(x) ≤ c(y). Therefore y ∈ D. Assume that x, y ∈ D,



Closure operations on Intuitionistic Linear algebras

then c(e) ≤ c(x), c(y), using (co4) we obtain c(e)∗c(e) ≤ c(x)∗c(y) ≤ c(x∗y);
since c(e) ∗ c(e) = c(e) we have x ∗ y ∈ D.

(4) Clearly, e ∈ A. Assume that x, y ∈ A, then c(x∧ e), c(y∧ e) ≥ c(e). We
have

c(e) = c(e) ∗ c(e) ≤ c(x ∧ e) ∗ c(y ∧ e) by (c4)

≤ c((x ∧ e) ∗ (y ∧ e)) by (co4)

≤ c((x ∧ e) ∧ (x ∧ e)) by using order-preservation and (c4).

Since (x∧e)∗(y∧e) ≤ (x∗y)∧e, (x∧y)∧e, ((x∧e)∗(y∧e))∧e = ((x∧e)∗(y∧e))
and ((x∧ e)∧ (y ∧ e) = ((x∧ e)∧ (y ∧ e))∧ e, we deduce that x∧ y, x ∗ y ∈ D.

Now assume that x ≤ y and x ∈ A, then c(e) ≤ c(x ∧ e) ≤ c(y ∧ e), hence
y ∈ A. Thus A is a filter of L. �

Example 4.3. Considering the IL-algebra of Example 2.2, we define
φ : L7 → L7,

φ(x) =


> if x ∈ {c,>},
e if x ∈ {a, b, d, e},
⊥ if x = ⊥.

It is easy to check that φ verifies the conditions of Definition 4.1, so φ is
a semi-prime closure operation on L.

One can also check that A = {x ∈ L7 : c(x ∧ e) ≥ c(e)} = {d, a, b, e,>}
which is a maximal filter of L7. One can see that ⊥, c 6∈ A. Furthermore, we
have D = {x ∈ L : c(x) ≥ c(e) = e} = {>, e, a, b, d, c} which is a deductive
system but not a filter (because a, c ∈ D and a ∧ c = ⊥ 6∈ D).

One can check that L
A = {{e, a, b, d,>}, {c}, {⊥}} and c(L) = {⊥, e,>}.

Clearly, φ is not injective.

It follows from Example 4.3 that a deductive system in an IL-algebra is
not always a filter.

Proposition 4.4 ([20, Proposition 8.8]). Let L be an IL-algebra, c : L→
L a semi-prime closure operation and c(L) = {x ∈ L : c(x) = x}. Then
(c(L),∧c,∨c, ∗c,→c, c(⊥), c(e), c(>)) is an IL-algebra defined as follows: for
any x, y ∈ c(L): x ∧c y = c(x ∧ y), x ∨c y = c(x ∨ y), x ∗c y = c(x ∗ y), x →c

y = c(x→ y), furthermore ∧c = ∧,→c=→.

Theorem 4.5. Let L be an IL-algebra, c : L→ L be a semi-prime closure
operation and (c(L),∧,∨c, ∗c,→c, c(⊥), c(e),>) as above. Then the following
properties hold:
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(1) c : L→ c(L) is an IL-epimorphism.
(2) If D = {a ∈ L | c(a ∧ e) ≥ c(e)}, then the map c : L/D → c(L) defined by

c([a]ΘD) = c(a)

is an IL-epimorphism. It is an isomorphism if e = >.

Proof. (1) follows from c(x∗y) = c(x)∗cc(y) and c(x→ y) = c(x)→ c(y).
(2) follows from (4) of Lemma 4.2, D is a filter of L. It follows that L

D is
an IL-algebra.

Let us show that c is well defined. Let aθDb, then a→ b, b→ a ∈ D, that
is

c((a→ b) ∧ e) ≥ c(e) and c((b→ a) ∧ e) ≥ c(e).

From a ∗ (a → b) ≤ b we have c(a) ∗ c(a → b) ≤ c(a ∗ (a → b)) ≤ c(b),
hence c(a → b) ≤ c(a) → c(b) and a → b ≤ c(a → b). Since a → b ∈ D,
we get that c(a) → c(b) ∈ D. Similarly one has c(b) → c(a) ∈ D, therefore
c(a)→ c(b), c(b)→ c(a) ∈ D, hence c(a)θDc(b). It follows that c([a]) = c([b]).
Thus c is well defined.

Since c : L → c(L) is an IL-homomorphism, c : L/D → c(L) is an IL-
homomorphism from the following statements:

c([x] ∗ [y]) = c([x ∗ y]) = c(x ∗ y) = c(x) ∗c c(y) = c([x]) ∗c c([y]),

c([x]→ [y]) = c([x→ y]) = c(x→ y) = c(x)→c c(y) = c([x])→c c([y])

c([x] ∧ [y]) = c([x ∧ y]) = c(x ∧ y) = c(x) ∧ c(y) = c(x) ∧c c(y).

The map c is surjective by definition. In Example 4.3, we get that c is an
isomorphism.

In the case e = >, the isomorphism follows from [14, Theorem 2.6] letting
D = {x ∈ L : c(x) = e}. �

Theorem 4.6. Let L, K be two IL-algebras and h : L → K be an IL-
homomorphism. Let c1 : L→ L, c2 : K → K be two closure operations. Set

D1 = {x ∈ L | c1(x∧eL) ≥ c(eL)} and D2 = {y ∈ K | c2(y∧eK) ≥ c2(eK)}.

Then the following statements hold:
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(1) If h(c1(x)) ≤ c2(h(x)) for all x ∈ L, which is called a closed map, then
the map

h : L/D1 → K/D2

defined by h([x]D1) = [h(x)]D2 is an IL-homomorphism.
(2) If h is surjective and such that h(c1(x)) = c2(h(x)) for all x ∈ L and if

h(c1(x))) ≥ c2(eK) implies c1(x) ≥ c1(eL), then the map h : L/D1 →
K/D2 is an IL-isomorphism.

Proof. (1) First let us show that h is well defined. Assume that aθD1
b,

then c1((a→ b) ∧ eL) ≥ c1(eL) and c1(eL) ≤ c1((b→ a) ∧ eL). Compatibility
property yields

eK = h(eL) ≤ h(c1(eL)) ≤ h(c1((a→ b) ∧ eL))

≤ c2(h((a→ b) ∧ eL)) (by assumption)

= c2((h(a)→ h(b)) ∧ eK) (due to h is a homomorphism).

It follows that eK ≤ c2((h(a) → h(b)) ∧ eK). Since c2 ◦ c2 = c2 we deduce
that c2(eK) ≤ c2((h(a) → h(b)) ∧ eK), hence h(a) → h(b) ∈ D2. A similar
argument shows that h(b)→ h(a) ∈ D2, therefore (h(a), h(b)) ∈ θD2 . Thus h
is well defined.

Since [x → y]D1 = [x]D1 → [y]D1 and [h(a) → h(b)]D2 = [h(a)]D1 →
[h(b)]D2 , we have h([a → b]) = h([a] → [b]) = [h(a) → h(b)] = [h(a)] →
[h(b)] = h([a]) → h([b]). Similarly h([a] ∗ [b]) = h([a]) ∗ h([b]). Thus h is an
IL-homomorphism.

(2) Assume that h is surjective and h(c1(x)) = c2(h(x)) for all x ∈
L and h(c1(x))) ≥ c2(eK), implies c1(x) ≥ c1(eL). From (1), h is an IL-
homomorphism and it is surjective; since h is surjective. It remains to show
that h is injective. Let h([a]D1) = h([b]D1). Let us show that [a]D1 = [b]D1 ,
that is c1((a → b) ∧ e) ≥ c1(eL) and c1((b → a) ∧ e) ≥ c1(eL). We have
h(a)→ h(b), h(b)→ h(a) ∈ D2, that is c2((h(a)→ h(b))∧ eK) ≥ c2(eK)) and
c2((h(b)→ h(a)) ∧ eK) ≥ c2(eK). Furthermore,

c2(eK) ≤ c2((h(a)→ h(b)) ∧ eK)

= c2(h(a→ b) ∧ eK)

= c2(h((a→ b) ∧ eL)) (due to h compatible with →,∧)

= h(c1((a→ b) ∧ eL)) (by assumption on h).



Y.L.Tenkeu Jeufack, E.R. Alomo Temgoua, O.A. Heubo-Kwegna

We deduce that c1((a→ b)∧eL) ≥ c1(eL) and a→ b ∈ D1. A similar argument
shows that b→ a ∈ D1. Therefore [a]D1 = [b]D1 . Thus h is injective. Hence h
is an isomorphism. �

Example 4.7. Consider the IL-algebra L7, the isomorphism h in Exam-
ple 2.20 and the closure c in Example 4.3. We have D1 = {x ∈ L : c(x ∧ e) ≥
c(e)} = {d, a, b, e,>}, L7/D1 = {[>], [c], [⊥]} which forms a residuated lattice
and h : L7/D1 → L7/D1 is an isomorphism, which is the identity map.

Proposition 4.8. Let c : L→ L, x 7→ c(x) be a semi-prime closure oper-
ation on L.
(1) If F ∈ F (L), then c(F ) is a filter in c(L) and c(F ) ⊆ F .
(2) If F is a maximal filter in L such that c(F ) 6= L, then c(F ) is a maximal

filter in c(L).
(3) If P is a prime filter in L, then c(P ) is a prime filter in c(L).

Proof. (1) Since c : L → c(L) is a surjective homomorphism of IL-alge-
bras we are done.

(2) Assume that F ∈ max(L). Let G be a filter of c(L) such that c(F ) ⊆
G ⊆ c(L) and c(F ) 6= c(G). We will show that G = c(L). Since c(F ) 6= c(G),
there exists x = c(u) ∈ C(G) \ c(F ); so u 6∈ F and 〈F ∪ {u}〉 = L. Using (iv)
of Proposition 2.15 there are n ≥ 1, f ∈ F such that ⊥ ≥ (f ∧ e) ∗ (u ∧ e)n,
and using order preservation we have

c(⊥) ≥ c((f ∧ e) ∗ (u ∧ e)n))

≥ (c(f ∧ e) ∗ (c(u ∧ e)n) ∈ c(G)

and c(⊥) ∈ c(G), so c(G) = c(L). Therefore c(F ) is maximal.
(3) Assume that P is a prime filter in L. Let us show that c(P ) is a prime

filter of c(L). Since c is a surjective homomorphism, c(P ) is a filter. Let x =
c(a), y = c(b) ∈ c(L) be such that (x ∧ c(e)) ∨ (y ∧ c(e)) ∈ c(P ), that is
c((a∧ e)∨ (b∧ e)) ∈ c(P ), by definition of c(P ), we have (a∧ e)∨ (b∧ e) ∈ P ;
since P is a prime filter, we have a ∈ P or b ∈ P ; hence c(a) ∈ c(P ) or
c(b) ∈ c(P ). Thus c(P ) is a prime filter. �

We end this work by exploring some relationships between closure opera-
tions on L and those of it powers LX . Giving a closure operation c on L, we
define φc on LX as follows:

φc : LX → LX , f 7→ φc(f) = c ◦ f.

Proposition 4.9. φc is a closure operation on LX .
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Proof. Extensive and monotone properties are clear. Let f ∈ LX , then
φc(φc(f)) = c ◦ c ◦ f and for any x ∈ X, we have c ◦ c ◦ f(x) = c ◦ c(f(x)) =
c(f(x)) = c ◦ f(x), hence c ◦ c ◦ f = c ◦ f , that is φc ◦ φc = φc. To end
the proof, we show that φc(f)∗̃φc(g) ≤ φc(f ∗̃g) for any f, g ∈ LX . Clearly
φc(f) = c ◦ f, φc(g) = c ◦ g and φc(f ∗̃g) = c ◦ (f ∗̃g) ∈ LX .

Let x ∈ X, then we have

φc(f)∗̃φc(g)(x) = φc(f)(x) ∗ φc(g)(x) = c(f(x)) ∗ c(g(x))

≤ c(f(x) ∗ g(x)) = c ◦ (f ∗̃g)(x) = φc(f ∗̃g)(x).

Hence φc(f)∗̃φc(g) ≤ φc(f ∗̃g). Thus φc is a closure operation on LX . �

Proposition 4.10. Let h : L→ K be an IL-homomorphism and X a non-
empty set. Set φh : LX → KX , f 7→ φh(f) = h ◦ f . Then the following state-
ments hold:
(i) φh is an IL-homomorphism.
(ii) If h is injective, then φh is also injective.
(iii) If h is an isomorphism, then φ is also an isomorphism.

Proof. (i) Let f, g ∈ LX , we will show that φh(f ∗̃g) = φh(f)∗̃φh(g) and
φh(f→̃g) = φh(f)→̃φh(g). Let x ∈ X, then we have

φh(f→̃g)(x) = [h ◦ (f→̃g)](x) = h[f(x)→ g(x)]

= h(f(x))→ h(g(x)) = h ◦ f(x)→ h ◦ g(x)

= ((h ◦ f)→ h ◦ g))(x) = (φh(f)→̃φh(g))(x).

Hence φh(f→̃g) = φh(f)→̃φ(g) and φh is compatible with →̃. A similar ar-
gument shows that φh is compatible with ∗̃, ∨̃ and ∧̃. Hence φh is an homo-
morphism.

(ii) Let f, g ∈ LX be such that φh(f) = φh(g). Then for any x ∈ X we
have φh(f)(x) = φh(g)(x), that is h(f(x)) = h(g(x)), since h is injective, we
deduce that f = g. Hence φh is also injective.

(iii) Assume that h is bijective. Then by (ii), φh is injective. Let g ∈ KX .
Then f = h−1 ◦ g ∈ LX and φh(f) = g. Thus φh is surjective and therefore
bijective. �
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5. Conclusion

In this paper, we introduce the Radical of filters and extended filters in IL-
algebras as generalization of the case of commutative residuated lattice and
investigate some of their properties. Closure operations on IL-algebras are
introduced and several examples are presented. We obtain that Radical and
extended filters yield examples of closure operations on IL-algebras having in-
teresting properties. Special classes of closure operations are considered (stable
closure, proper closure) and a preliminary investigation was carried out.

As an introductory paper on closure operations on IL-algebras, we focused
on producing a good variety of examples and studying their first properties.
Some techniques of construction of closure operations on IL-algebras are in-
vestigated. Using stable closure operations, we show that the collection of
closed filters via stable closure operations forms a complete Heyting algebra.
Hyperarchimedean IL-algebras are introduced and characterized in terms of
proper closure operations. A concrete characterization of maximal filters in
IL-algebras is obtained and that characterization allows us to show that if
an IL-algebra is hyperarchimedean, then any prime filter of L is a maximal
filter and all filters are rad-closed. We finish the paper with the study of
semi-prime closure operations on IL-algebras and their relationships with ho-
momorphisms. The obtained results generalized some of the existing results in
[14]. We show that semi-prime closure operation c induces an IL-epimorphism
and a quotient IL-algebra, first isomorphism theorem is investigated. Finally,
it is shown that each semi-prime closure operation on an IL-algebra L in-
duces a semi-prime closure operation on the power LX of L for an arbitrary
set X 6= ∅.

In our future work, we will explore more characterizations of IL-algebras
using closure operations and study topology derived from closure operations
in IL-algebras.
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