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ON FUNCTIONS WITH MONOTONIC DIFFERENCES

Teresa Rajba

Dedicated to Professor Kazimierz Nikodem on his 70th birthday

Abstract. Motivated by the Szostok problem on functions with monotonic
differences (2005, 2007), we consider a-Wright convex functions as a general-
ization of Wright convex functions. An application of these results to obtain
new proofs of known results as well as new results is presented.

1. Introduction

Let I be a subinterval of R and f : I → R be a function. The function f is
called Wright convex ([11]) if

f(αx+ (1− α)y) + f((1− α)x+ αy) ≤ f(x) + f(y) (x, y ∈ I, α ∈ [0, 1]).

The function f is called strictly Wright convex if

f(αx+ (1− α)y) + f((1− α)x+ αy) < f(x) + f(y) (x, y ∈ I, α ∈ [0, 1]).
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Let a ≥ 0 be a fixed real number. The difference operator of the function f
has the form

∆af(x) = f(x+ a)− f(x) (x ∈ I ∩ (I − a)).

According to [4], the Wright convexity can be characterized as follows.

Proposition 1.1. The function f : I → R is Wright convex if and only if

(1.1) ∆t∆af(x) ≥ 0 (t, a > 0, x ∈ I ∩ [I − (t+ a)]).

For strictly Wright convex functions

∆t∆af(x) > 0 (t, a > 0, x ∈ I ∩ [I − (t+ a)]).

By (1.1), Wright convex functions can be characterized as functions f , for
which the difference operators fa = ∆af are non-decreasing for all a > 0.
Similarly, f is Wright concave if the difference operators fa are non-increasing
for all a > 0.

There are many generalizations of Wright convex functions. The author [7]
studied a generalization of Wright convex functions via randomization. The
author [7] studied (among others) the non-decreasing function f that satisfies
the inequality

E∇θ∇tf(x) ≥ 0 (x ∈ R, t > 0),

where EX is the expectation of a real valued random variable X, θ is a non-
negative real valued random variable and ∇a is the backward difference oper-
ator defined by ∇af(x) = f(x)− f(x− a) (obviously ∇af(x+ a) = ∆af(x)).

T. Szostok [8, 9] posed a problem for functions f defined on an interval.
Assume, that for every a > 0 the function fa is strictly monotonic. Is fa strictly
increasing for every a > 0 or strictly decreasing for every a > 0? Szostok [10]
proved that the answer is positive if f is continuous. Balcerowski [1] proved
that the answer is positive in general.

Motivated by the Szostok problem, we consider some convexity concept as
a generalization of Wright convexity of functions. Given a ≥ 0, we say that
the function f : I → R is a-Wright convex if

∆t∆af(x) ≥ 0 (t > 0, x ∈ I ∩ [I − (t+ a)]).

In other words, f is a-Wright convex if the difference operator fa is non-
decreasing. We say that f is a-Wright concave if the function fa is non-
increasing. Let S be a set such that S ⊂ [0,∞). We say that f is S-Wright
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convex (S-Wright concave) if f is a-Wright convex (a-Wright concave) for all
a ∈ S. We put

Af = {a ≥ 0: f is a-Wright convex},

Bf = {a ≥ 0: f is a-Wright concave}.

Then f is Wright convex if and only if Af = [0,∞) and f is Wright concave
if and only if Bf = [0,∞).

Let BV be the class of functions f : R → R having bounded variation
over any finite interval. In this paper, we prove that the sets Af and Bf are
additive closed subsemigroups of [0,∞) containing 0, and if S ⊂ [0,∞) is such
a semigroup, then there is a function f ∈ BV such that Af = S (Bf = S).
Moreover, we study relationships between the sets Af and Bf corresponding
to the function f ∈ BV . We give an application of these results to give new
proofs of some known results as well as we obtain new results.

2. a-Wright convex functions

For the standard properties of difference operator, we refer to [3].

Lemma 2.1. Let f : R→ R be a function. Then

(2.1) ∆a1+a2f(x) = ∆a2f(x+ a1) + ∆a1f(x),

for all x ∈ R, a1, a2 > 0.

Proof.

∆a1+a2f(x) = f(x+ a1 + a2)− f(x)

= (f(x+ a1 + a2)− f(x+ a1)) + (f(x+ a1)− f(x))

= ∆a2f(x+ a1) + ∆a1f(x). �

Lemma 2.2. Let f : R→ R be a function of the form f(x) =
∫ x
−∞ g(u)du,

where g : R→ R is an integrable function such that g(x) = 0 if x < 0. Then

(2.2) ∆af(x) =

∫ x

−∞
∆ag(u)du,

for all x ∈ R, a > 0.
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Proof.

∆af(x) = ∆a

∫ x

−∞
g(u)du =

∫ x+a

−∞
g(u)du−

∫ x

−∞
g(u)du

=

∫ x

−∞
g(u+ a)du−

∫ x

−∞
g(u)du

=

∫ x

−∞
(g(u+ a)− g(u))du =

∫ x

−∞
∆ag(u)du. �

Theorem 2.3. Let f : R → R be a function such that f ∈ BV . Then Af
is an additive closed subsemigroup of [0,∞) containing 0.

Proof. Let f ∈ BV . Obviously 0 ∈ Af . Let a1, a2 ≥ 0 be such that
a1, a2 ∈ Af . If a1 = 0 or a2 = 0, then obviously a1 + a2 ∈ Af . Assume
that a1, a2 > 0. By (2.1), a1 + a2 ∈ Af . This implies that Af is an additive
subsemigroup of [0,∞).

Assume now, that a1 > 0, a2 > 0, . . . be such that a1 ∈ Af , a2 ∈ Af , . . .
and limn→∞ an = a0 ∈ R. Since a1, a2, . . . > 0, it follows that a0 ≥ 0. If
a0 = 0, then obviously a0 ∈ Af . Assume that a0 > 0. Since f ∈ BV , there
exist non-decreasing functions ϕ,ψ : R→ R such that f = ϕ− ψ.

Taking into account that non-decreasing functions are continuous λ-a.e.
and limn→∞ an = a0, we obtain that ϕ(x + an) −−−−→

n→∞
ϕ(x + a0) and

ψ(x + an) −−−−→
n→∞

ψ(x + a0) λ-a.e., consequently, ∆anϕ(x) = ϕ(x + an) −
ϕ(x) −−−−→

n→∞
ϕ(x+ a0)−ϕ(x) = ∆a0ϕ(x), ∆anψ(x) = ψ(x+ an)−ψ(x) −−−−→

n→∞
ψ(x + a0) − ϕ(x) = ∆a0ψ(x) λ-a.e., which implies ∆anf(x) = ∆anϕ(x) −
∆anψ(x) −−−−→

n→∞
∆a0ϕ(x) − ∆a0ψ(x) = ∆a0f(x) λ-a.e. Taking into account

that a1, a2, . . . ∈ Af , i.e. the functions ∆a1f,∆a2f, . . . are non-decreasing, we
obtain that ∆a0f is also non-decreasing. Indeed, contrary to our statement
suppose, that ∆a0f is not non-decreasing. Then, there exist x1 < x2 such that
∆a0f(x2) − ∆a0f(x1) < 0. Without loss of generality, we may assume that
x1, x2 are the points of continuity of ∆a0f . Since ∆anf is non-decreasing, it
follows ∆anf(x2)−∆anf(x1) ≥ 0, n = 1, 2, . . .. Consequently, we obtain

0 ≤ lim
n→∞

∆anf(x2)− lim
n→∞

∆anf(x1) = ∆a0f(x2)−∆a0f(x1) < 0,

which is a contradiction. Thus, we obtain that ∆a0f is non-decreasing, which
implies that a0 ∈ Af . This completes the proof. �

By Theorem 2.3, we obtain the following corollaries.
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Corollary 2.4. Let f : R → R be a function such that f ∈ BV . Then
Bf is an additive closed subsemigroup of [0,∞) containing 0.

Corollary 2.5. If there exists a sequence of positive numbers a1, a2, . . . ∈
Af (Bf ) such that limn→∞ an = 0, then Af = [0,∞) (Bf = [0,∞)).

Proof. Let a1 > 0, a2 > 0, . . . be such that a1 ∈ Af , a2 ∈ Af , . . . and
limn→∞ an = 0. Then the additive semigroup, which is generated by the set
{an}∞n=1 is dense in the set [0,∞). Consequently, the closed additive semigroup
which is generated by the set {an}∞n=1 is equal to [0,∞). By Theorem 2.3, this
implies that Af = [0,∞). Similarly, considering the sequence of elements from
Bf satisfying the above assumptions, we obtain Bf = [0,∞). The corollary is
proved. �

LetM(R) be the set of all signed Borel measures on B(R), which are finite
on compact sets. Let α ∈ R. Let Fµ,α : R → R be the distribution function
corresponding to µ ∈ M(R), which is defined as follows: Fµ,α(x) = µ([α, x))
if x > α; Fµ,α(x) = −µ([x, α)) if x < α and Fµ,α(α) = 0. Then the function
Fµ,α(x) is left continuous. Obviously for all α, β ∈ R, we have Fµ,α(x) =
Fµ,β(x) + Cα,β, x ∈ R, where Cα,β ∈ R, and µ([a, b)) = Fµ,α(b) − Fµ,α(a) =
Fµ,β(b)− Fµ,β(a), a, b ∈ R, a < b.

Let µ ∈ M(R). Let Fµ be the distribution function corresponding to
µ ∈ M(R), which is left continuous. Then Fµ is uniquely determined up to
a constant, i.e. if Fµ and F̃µ are two distribution functions corresponding to
µ, which are left continuous, then there exists C ∈ R, such that F̃µ = Fµ+C.

Moreover, if the function f ∈ BV is left continuous, then we consider
the signed measure µ ∈ M(R) such that µ([a, b)) = f(b) − f(a), a, b ∈ R,
a < b. Then f = Fµ (up to a constant), where Fµ is the distribution function
corresponding to µ, which is a left continuous function. Consequently, we can
regard left continuous functions f ∈ BV as distribution functions of signed
measures µ ∈M(R).

Similarly, if f ∈ BV is a right continuous function, then it is the distribu-
tion function of signed measure µ ∈ M(R) such that µ((a, b]) = f(b)− f(a),
a, b ∈ R, a < b.

It is not difficult to prove that every function f ∈ BV can be written in
the form of the sum of left continuous and right continuous functions from
BV . Thus, every function f ∈ BV is the distribution function of the signed
measure µ ∈ M(R) and without loss of generality, we may assume that if
f ∈ BV then f is left continuous.

In the following theorem, we give a characterization of a-Wright convexity
of functions f ∈ BV in terms of measures µ corresponding to f such that
Fµ = f .
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Theorem 2.6. Let a ≥ 0, µ ∈ M(R) and f = Fµ. Then f is a-Wright
convex if and only if

(2.3) µ(B + a) ≥ µ(B) for all B ∈ B(R).

Proof. If a = 0, then the assertion is obviously true. Assume that a > 0.
(⇒) Assume that f is a-Wright convex. Let t > 0. Then

0 ≤ ∆t∆af(x) = ∆a∆tf(x) = ∆a(f(x+ t)− f(x)) = ∆aµ([x, x+ t))(2.4)

= µ([x, x+ t) + a)− µ([x, x+ t)).

By (2.4), we have that inequality (2.3) is satisfied for all sets B of the form
B = [x, x+ t), where x ∈ R, t > 0, which implies that (2.3) is satisfied for all
sets B ∈ B(R).

(⇐) Assume, that (2.3) holds for all sets B ∈ B(R). Then in particular, it
is satisfied for B = [x, x + t), where x ∈ R, t > 0. Then taking into account
that µ([x, x+ t) +a) <∞ and µ([x, x+ t)) <∞, by (2.4), we obtain that f is
a-Wright convex. The theorem is proved. �

We will call the measures µ ∈ M(R) satisfying (2.3) a-superinvariant
measures. We say that µ is S-superinvariant if it is a-superinvariant for all
a ∈ S, where S ⊂ [0,∞).

Corollary 2.7. Let a ≥ 0, µ ∈ M(R) and f = Fµ. Then f is a-Wright
concave if and only if

µ(B + a) ≤ µ(B) for all B ∈ B(R).

Corollary 2.8. Let a ≥ 0, µ ∈M(R) and f = Fµ. Then
(a) f is a-Wright convex if and only if µ(B + ia) ≥ µ(B), B ∈ B(R), i =

0, 1, 2, . . .,
(b) f is a-Wright convex if and only if µ(B) ≥ µ(B − ia), B ∈ B(R), i =

0, 1, 2, . . .,
(c) f is a-Wright concave if and only if µ(B + ia) ≤ µ(B), B ∈ B(R), i =

0, 1, 2, . . .,
(d) f is a-Wright concave if and only if µ(B) ≤ µ(B − ia), B ∈ B(R), i =

0, 1, 2, . . ..

By (2.2), we obtain immediately the following lemma.

Lemma 2.9. Let f ∈ BV be a function of the following form f(x) =∫ x
−∞ g(u) du, x ∈ R, where g : R → R is an integrable function such that
g(x) = 0 if x < 0. Let f̃ = −f . Then
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(a) a ∈ Af if and only if ∆ag(u) ≥ 0 λ-a.e.,
(b) a ∈ Bf if and only if ∆ag(u) ≤ 0 λ-a.e.,
(c) a ∈ Af if and only if a ∈ Bf̃ .

Let χB(x) = 1 if x ∈ B and χB(x) = 0 if x /∈ B (B ⊂ R). We give
examples of functions f and their corresponding sets Af , Bf .
(E1) Af = {0} ∪ [10,∞), Bf = {0}, if f(x) =

∫ x
−∞ g(u) du, where g(x) =

χ[0,1]∪[10,∞)(x) (x ∈ R), as a consequence of Lemma 2.9, because {a ≥
0: ∆ag(u) ≥ 0 λ-a.e.} = {0} ∪ [10,∞), and {a ≥ 0: ∆ag(u) ≤ 0 λ-a.e.}
= {0}.

By Theorem 2.6 and Corollary 2.7, we obtain
(E2) Af =

⋃∞
j=0 {jh0}, Bf = {0}, if f = Fµ and µ =

∑∞
j=0 δjh0

, h0 > 0,

(E3) Af = Bf =
⋃∞
j=−∞ {jh0}, if f = Fµ and µ =

∑∞
j=−∞ δjh0

, h0 > 0.
Let S be the set of all closed additive subsemigroups of [0,∞) containing 0.

By Theorem 2.3 and Corollary 2.4, if f ∈ BV then Af , Bf ∈ S. In the next
theorem, we prove that the converse is true. Let f ∈ BV , we put S(f) = Af .

Theorem 2.10. Let S ∈ S. Then there exists a function f ∈ BV such that

Af = S,(2.5)

B−f = S.(2.6)

Proof. Let S ∈ S. If S = {0}, then by Theorem 2.3, for the function
f = Fµ with µ = δ1, equality (2.5) is satisfied. If S = [0,∞), then the function
f(x) = x+ = max (x, 0) (x ∈ R) is of the form f(x) =

∫ x
−∞ g(u) du, x ∈ R,

where g(x) = χ[0,∞)(x), x ∈ R. Since {a ≥ 0: ∆ag(u) ≥ 0 λ-a.e.}= [0,∞), by
Lemma 2.9, equality (2.5) is satisfied.

Assume, that S 6= {0} and S 6= [0,∞). First, we consider the case when
the set S is of the following form

(2.7) S =

n⋃
r=1

Ar ∪ {0},

where Ar = [cr, dr], 0 < cr ≤ dr < cr+1 <∞, r = 1, 2, . . . , n−1, An = [cn,∞),
n ∈ N. Let ε be a real number such that 0 < ε < minr=0,1,...,n−1(cr+1 − dr),
where d0 = 0. Given c > 0, we put ωc(x) = χ[0,c](x), x ∈ R. Let g(x) =

sups∈S ωε(x − s), x ∈ R, f(x) =
∫ x
−∞ g(u)du. Since {a ≥ 0: ∆ag(u) ≥

0 λ-a.e.} = S, by Lemma 2.9, equality (2.5) is satisfied.
Assume now that S is not of the form (2.7).
Assume first, that there exists M > 0, such that [M,∞) ⊂ S. Then, the

set DM = S ∩ [0,M ] is a nonempty closed set and the set D′M = (0,M) \DM
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is a nonempty open set. Then for every x ∈ D′M , there exists an open interval
Ux such that x ∈ Ux and Ax ⊂ D′M . Let U(x) be the set of all intervals Ux
such that x ∈ Ux and Ux ⊂ D′M . Let Ũx =

⋃
{Ux : Ux ∈ U(x)}, i.e. Ũx is the

biggest interval from among intervals Ux. Obviously, if y ∈ Ũx, then Ũx = Ũy
and if y /∈ Ũx, then Ũx ∩ Ũy = ∅. Then for all x, y ∈ D′M , either Ũx = Ũy or
Ũx∩Ũy = ∅. We have D′M =

⋃
{Ũx : x ∈ D′M}. Let δ > 0. Since D′M ⊂ (0,M),

it follows that the number of those pairwise disjoint intervals Ũx, x ∈ D′M , for
which |Ũx| ≥ δ is finite (|Ũx| is the lenght of the interval Ũx).

Let Sem(B) (B ∈ B(R), B ⊂ [0,∞)) be the smallest closed additive
semigroup such that B ∪ {0} ⊂ Sem(B). Let δ > 0. We define the set Sδ,M
as follows

Sδ,M = Sem

(
S \

⋃
x∈D′

M , |Ũx|≥δ

Ũx

)
.

Then Sδ,M is of the form (2.7), where cn ≤ M . Moreover, we have Sδ1,M ⊃
Sδ2,M if δ1 > δ2 and Sδ,M1 ⊃ Sδ,M2 ifM1 < M2, which implies Sδ1,M1 ⊃ Sδ2,M2

if δ1 > δ2 and M1 < M2.
Let δn and Mn, n = 1, 2, . . ., be sequences of positive real numbers such

that δn ↓ 0 and Mn ↑ ∞. Let Si = Sδi,Mi , i = 1, 2, . . .. Then Si ⊃ Si+1,
i = 1, 2, . . ., S =

⋂∞
i=1 Si and every Si, i = 1, 2, . . ., is of the form (2.7):

Si =
⋃ni

r=1Ai,r ∪ {0}, ni < ∞, Ai,r = [ci,r, di,r], 0 < ci,r ≤ di,r < ci,r+1,
r = 1, 2, . . . , ni − 1, Ai,ni = [ci,ni ,∞), ci,ni ≤Mi, ni ∈ N and

δi < min
r=0,1,...,ni−1

(ci,r+1 − di,r),

where di,0 = 0. Let εi, i = 1, 2, . . . be the sequence of real numbers such that
εi > εi+1, limi→∞ εi = 0, 0 < εi < δi.

Let gi(x) = sups∈Si
ωεi(x− s), x ∈ R, fi(x) =

∫ x
−∞ gi(u)du. Let

f(x) =
∞∑
i=1

2−ifi(x).

Since {a ≥ 0: ∆agi(u) ≥ 0 λ-a.e.} = Si, by Lemma 2.9, S(fi) = Si, i =
1, 2, . . ..

Noticing, that Si ⊃ Si+1 and εi > εi+1, i = 1, 2, . . ., we have that
S(
∑k
i=1 2−ifi(x)) =

⋂k
i=1 Si = Sk for all k = 1, 2, . . .. Taking into account

that S =
⋂∞
i=1 Si, we obtain Af = S(f) = S, consequently (2.5) is satisfied.

By Lemma 2.9, equality (2.6) also holds, the theorem is proved. �
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Remark 2.11. Let the function f : R → R be of the form f = ψ1 + ψ2,
where ψ1 : R → R, ψ2 : R → R are two S-Wright convex functions such that
ψ1 is non-decreasing and ψ2 is non-increasing. Then f ∈ BV and f is S-
Wright convex. Putting ϕ1 = ψ1 and ϕ2 = −ψ2, we obtain that f is of the
form f = ϕ1−ϕ2, where both the functions ϕ1, ϕ2 are non-decreasing and the
functions ϕ1 and −ϕ2 are S-Wright convex. In the next theorem, we prove
that, conversely, if f ∈ BV and f is S-Wright convex, then there exist non-
decreasing functions ϕ1, ϕ2 with the properties as above.

Theorem 2.12. Let S be a set such that S ∈ S and S ∩ (0,∞) 6= ∅. Let
f ∈ BV be a S-Wright convex left continuous function and ν be the signed
measure corresponding to f by the formula ν([a, b)) = f(b) − f(a), a, b ∈ R,
a < b. Then there exist
(a) Borel measures ν+ and ν− (non-negative measures), such that ν = ν+−ν−

and ν+ and −ν− are both S-superinvariant,
(b) non-decreasing functions ϕ1, ϕ2 : R → R such that f = ϕ1 − ϕ2 and both

functions ϕ1 and −ϕ2 are S-Wright convex.

Proof. Let S, f and ν satisfy the assumptions of the theorem. By the
Hahn decomposition theorem, there exist two sets P,N ∈ B(R), such that
(1) P ∪N = R and P ∩N = ∅.
(2) For every B ∈ B(R), such that B ⊂ P , one has ν(B) ≥ 0, i.e. P is

a positive set for ν.
(3) For every B ∈ B(R), such that B ⊂ N , one has ν(B) ≤ 0, i.e. N is

a negative set for ν.
Then by the Hahn-Jordan decomposition theorem, ν has a unique decompo-
sition into difference ν = ν+ − ν− of two positive measures ν+ and ν− such
that ν+(B) = 0 for every Borel measurable B ⊂ N and ν−(B) = 0 for every
Borel measurable B ⊂ P . These two (positive) measures ν+ and ν− can be
defined as ν+(B) = ν(B ∩ P ) and ν−(B) = −ν(B ∩N). Let ϕ1,−ϕ2 be the
distribution functions corresponding to ν+ and −ν−, respectively, such that
both ϕ1 and −ϕ2 are left-continuous. We will show that both ν+ and −ν−
are S-superinvariant.

If the measure ν− is the zero measure, then ν = ν+ and −ν− are both
S-superinvariant, and both ϕ1 and −ϕ2 are S-Wright convex.

Similarly, if ν+ is the zero measure, then ν = −ν− and ν+ are are both
S-superinvariant, and both ϕ1 and −ϕ2 are S-Wright convex.

Assume, that the measures ν+ and −ν− are both non-zero measures.
First, we will prove, that for any B ⊂ P and a ∈ S, we have B + a ⊂ P

ν-a.e. Suppose that, on the contrary, there are an B0 ⊂ P and a0 ∈ S, such
that B0 + a0 * P ν-a.e. This implies, that

(2.8) ν((B0 + a0) ∩N) 6= 0.
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Let BN ⊂ B0 be the set such that

(2.9) (B0 + a0) ∩N = BN + a0.

By (2.8)

(2.10) ν(BN + a0) 6= 0.

Since BN ⊂ B0 ⊂ P , it follows that ν(BN ) = ν+(BN ) ≥ 0. Taking into
account that ν is S-superinvariant and a0 ∈ S, we obtain

(2.11) ν(BN + a0) ≥ ν(BN ) ≥ 0.

By (2.10) and (2.11), we have

(2.12) ν(BN + a0) > 0.

By (2.9), it follows that BN + a0 ⊂ N , which implies that ν(BN + a0) =
−ν−(BN + a0) ≤ 0. Consequently, taking into account (2.10), we obtain
ν(BN + a0) < 0, which contradicts (2.12). Thus, we obtain

(2.13) B + a ⊂ P, ν-a.e. for all B ⊂ P, a ∈ S.

Now we will prove that ν+ is S-superinvariant, i.e.

(2.14) ν+(B + a) ≥ ν+(B)

for all B ∈ (B) and a ∈ S.
It suffices to prove (2.14) for B ⊂ P and for B ⊂ N .
Let B ⊂ P and a ∈ S. Then, by (2.13) B + a ⊂ P ν-a.e., which implies

ν+(B + a) = ν(B + a) ≥ ν(B) = ν+(B).

Let B ⊂ N and a ∈ S. Then ν+(B) = 0. Since ν+ is non-negative measure,
it follows that ν+(B + a) ≥ 0. We have, ν+(B + a) ≥ 0 = ν+(B).

Consequently, we obtain that ν+ is S-superinvariant.
Similarly, we can prove that −ν− is S-superinvariant.
Since ϕ1,−ϕ2 are the distribution functions corresponding to ν+ and −ν−,

respectively, by Theorem 2.6, the functions ϕ1 and −ϕ2 are both S-Wright
convex. �
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3. Sets Af and Bf

In this section, we study the relationships between the sets Af and Bf
corresponding to the function f ∈ BV . Recall that two non-zero real numbers
u and v are said to be commensurable if their ratio u

v is a rational number;
otherwise u and v are called incommensurable.

Lemma 3.1. Let f ∈ BV be a function and ν be the signed measure corre-
sponding to f such that Fν = f . Assume that there exist a1, a2 > 0 such that
a1 ∈ Af and a2 ∈ Bf . Then one of the following conditions is satisfied
(a) either there exists a0 > 0 such that Af = Bf = {ja0; j = 0, 1, . . .},
(b) or Af = Bf = [0,∞).

Proof. Let f ∈ BV be a function and ν be the signed measure corre-
sponding to f such that Fν = f . Let a1, a2 > 0 be real numbers such that
a1 ∈ Af and a2 ∈ Bf . Then, by Corollary 2.8,

ν(B) ≤ ν(B + ja1) ≤ ν(B + ja1 − ka2), B ∈ B(R), j, k = 0, 1, 2, . . . ,

which implies

(3.1) ν(B) ≤ ν(B + ja1 − ka2), B ∈ B(R), j, k = 0, 1, 2, . . . .

First, we consider the case when for all a1, a2 > 0, if a1 ∈ Af and a2 ∈ Bf ,
then a1 and a2 are commensurable.

Let a1, a2 > 0 be fixed real numbers such that a1 ∈ Af and a2 ∈ Bf . Then
there exist p, q ∈ N such that a2 = p

qa1, where
p
q is an irreducible fraction.

Then a2 = pa3, a1 = qa3, where a3 = a2
p = a1

q . We put a4 = qa2 = pa1 = pqa3.
Taking j = lp, l = 0, 1, 2, . . ., k = mq, m = 0, 1, 2, . . ., by (3.1), we obtain

ν(B) ≤ ν(B + (l −m)a4), B ∈ B(R), l,m = 0, 1, 2, . . . ,

which is equivalent to

(3.2) ν(B) ≤ ν(B + ia4), B ∈ B(R), i = 0,±1,±2, . . . ,

as well as

(3.3) ν(B1) ≤ ν(B1 − ia4), B1 ∈ B(R), i = 0,±1,±2, . . . .
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Taking B1 = B + ia4, by (3.3), we obtain

(3.4) ν(B) ≥ ν(B + ia4), B ∈ B(R), i = 0,±1,±2, . . . .

Then, by (3.2) and (3.4), we obtain

ν(B) = ν(B + ia4), B ∈ B(R), i = 0,±1,±2, . . . .

Let

C0 = {a0 > 0: ν(B) = ν(B + ia0), B ∈ B(R), i = 0,±1,±2, . . .}.

Since a4 ∈ C0, it follows that C0 6= ∅. By Corollary 2.8, we conclude that
C0 ⊂ Af and C0 ⊂ Bf . Let

ã0 = inf{a0 > 0: a0 ∈ C0}.

Obviously, ã0 ∈ Af ∩Bf . We will prove that ã0 > 0. Suppose, on the contrary,
that ã0 = 0. Then, there exists a sequence of positive numbers an ∈ C0, n =
1, 2, . . ., such that limn→+∞ an = 0. Since, C0 ⊂ Af ∩ Bf , it follows that
an ∈ Af ∩ Bf , n = 1, 2, . . .. Taking into account, that Af and Bf are closed
additive semigrous, we conclude that Af = Bf = [0,∞), which contradicts
the assumption that every a1 and a2 are commensurable if a1, a2 > 0, a1 ∈ Af
and a2 ∈ Bf . Thus, we obtain that ã0 > 0.

We will prove, that

(3.5) C0 = {jã0 : j = 1, 2, . . .},

or equivalently, that if a0 ∈ C0, then there exists k0 ∈ N, such that

(3.6) a0 = k0ã0.

Let a0 ∈ C0, then

(3.7) ν(B) = ν(B + ia0), B ∈ B(R), i = 0,±1,±2, . . . .

Since a0 ∈ C0 ⊂ Bf and a0 ∈ Af , there exist natural numbers p, q, such that
a0 = p

q ã0 (pq is an irreducible fraction). If a0 = ã0, then (3.6) is satisfied.
Assume that a0 6= ã0.

If p < q, then a0 < ã0, which contradicts the definition of ã0 as the
infimum of elements from C0. Consequently, we obtain that p > q.



On functions with monotonic differences 105

Assume that q > 1. Then 1 ≤ [pq ] < p
q , which implies 0 < p

q − [pq ] < 1. By
(3.7), we have

(3.8) ν(B) = ν(B + a0) = ν(B +
p

q
ã0), B ∈ B(R).

Since ã0 ∈ C0, it follows that ν(B1) = ν(B1 − jã0), j = 0,±1,±2, . . ., B1 ∈
B(R). Then taking B1 = B + p

q ã0 and j = [pq ], we obtain

(3.9) ν

(
B +

p

q
ã0

)
= ν

(
B +

p

q
ã0 −

[
p

q

]
ã0

)
= ν

(
B +

(
p

q
−
[
p

q

])
ã0

)
.

By (3.8) and (3.9), we obtain

ν (B) = ν

(
B +

(
p

q
−
[
p

q

])
ã0

)
,

which implies that

(3.10)
(
p

q
−
[
p

q

])
ã0 ∈ C0.

Since 0 < p
q −

[
p
q

]
< 1, (3.10) contradicts the definition of ã0 as the infimum

of elements from C0. Consequently, we obtain that q = 1 and a0 = pã0, which
implies that (3.6) is satisfied with k0 = p. Thus (3.5) is proved.

Now, we will prove that Af = C0 ∪ {0}. Let a1 ∈ Af , a1 > 0. By Corol-
lary 2.8,

(3.11) ν(B) ≤ ν(B + ja1), B ∈ B(R), j = 0, 1, 2, . . . .

Suppose, that there exists B0 ∈ B(R), such that

(3.12) ν(B0) < ν(B0 + a1).

Since a1 ∈ Af and ã0 ∈ Bf , it follows that there exist natural numbers p, q
such that a1 = p

q ã0. By (3.11) and (3.12), taking j = q, we obtain

ν(B0) < ν(B0 + a1) ≤ ν(B0 + qa1) = ν(B0 + q
p

q
ã0) = ν(B0 + pã0),

consequently, we have

(3.13) ν(B0) < ν(B0 + pã0).
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Since ã0 ∈ C0, we have

ν(B0) = ν(B0 + pã0),

which contradicts (3.13). Thus, we conclude, that

(3.14) ν(B2) = ν(B2 + a1), B2 ∈ B(R).

Taking in (3.14) B2 = B − a1, we obtain

(3.15) ν(B) = ν(B − a1), B ∈ B(R).

By (3.14) and (3.15), we obtain

ν(B) = ν(B + ja1), B ∈ B(R), j = 0,±1,±2, . . . ,

which implies that a1 ∈ C0.
Similarly one can prove that Bf = C0 ∪ {0}. Thus, we obtain that in the

case when for all a1, a2 > 0 such that a1 ∈ Af and a2 ∈ Bf , a1 and a2 are
commensurable, there exists a0 > 0 such that Af = Bf = {ja0; j = 0, 1, . . .}.

Now, we consider the case when there exist a1, a2 > 0 such that a1 ∈ Af ,
a2 ∈ Bf , and a1, a2 are incommensurable. By (3.1), we obtain

(3.16) ν(B) ≤ ν(B + a), B ∈ B(R), a ∈ D,

where

D = {ja1 − ka2 : j, k = 0, 1, 2, . . .}.

Since a1 and a2 are positive and incommensurable, it follows D = R.
Let t0 ∈ R, then there exists a sequence tn ∈ D (n = 1, 2, . . .) such that

tn ↑n→+∞ t0. Let c, d ∈ R be such that c < d. By (3.16), we obtain

(3.17) ν([c, d)) ≤ ν([c, d) + tn) = ν([c+ tn, d+ tn)) = f(d+ tn)− f(d+ tn).

Taking into account that the function f is left continuous, we have

(3.18) lim
n→+∞

(f(d+ tn)− f(d+ tn)) = f(d+ t0)− f(d+ t0)

= ν([c+ t0, d+ t0)) = ν([c, d) + t0).

Then, by (3.17) and (3.18), we obtain

ν([c, d)) ≤ ν([c, d) + t0),
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which implies

(3.19) ν(B) ≤ ν(B + t), B ∈ B(R), t ∈ R,

or equivalently

(3.20) ν(B2) ≤ ν(B2 − t), B2 ∈ B(R), t ∈ R.

Taking B2 = B + t, by (3.20), we obtain

(3.21) ν(B + t) ≤ ν(B), B ∈ B(R), t ∈ R.

Then, by (3.19) and (3.21), we obtain

(3.22) ν(B) = ν(B + t), B ∈ B(R), t ∈ R.

Thus, by (3.22), we conclude that Af = Bf = [0,∞). �

As an immediate consequence of Lemma 3.1, we obtain the following the-
orem.

Theorem 3.2. Let f ∈ BV . Then one of the following conditions is ful-
filled:
(a) Af = Bf = {0},
(b) Af = {0}, Bf ∩ (0,∞) 6= ∅,
(c) Af ∩ (0,∞) 6= ∅, Bf = {0},
(d) Af = Bf = {jh0; j = 0, 1, . . .}, where h0 > 0,
(e) Af = Bf = [0,∞).

We will give a new proof of Ng’s theorem on decomposition of Wright con-
vex functions [5] as well as for the Szostok-Balcerowski theorem on monotonic
differences. Let us recall the definition of the difference property. Let A be
a class of real functions defined on R. A will be said to have the difference
property, if any function g such that for each a ≥ 0, ∆ag ∈ A, is of the form
g = f +A, where f ∈ A, and A is an additive function. We will need de Bru-
jin’s theorem [2], which is related to functions, which have differences from the
class BV, de Brujin proved that the class BV has the difference property ([2]).

Theorem 3.3 (de Bruijn’s Theorem [2]). Assume that g : R → R is a
function such that ∆ag ∈ BV for all a > 0. Then there exist an additive
function A : R → R and a function f : R → R, such that f ∈ BV and g =
f +A.
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Note that the original proof by Ng [5] used de Bruijn’s theorem [2], which
is related to functions which have continuous differences. Recently, Páles [6]
gave an elementary proof of Ng’s theorem.

Theorem 3.4 (Ng’s Decomposition Theorem [5]). A function g : R → R
is Wright convex if and only if there exist a convex function f : R → R and
an additive function A : R→ R, such that g = f +A.

Proof. We give a new proof. It suffices to prove (⇒). Assume that g : R→
R is a Wright convex function. Then, by Proposition 1.1,

(3.23) ∆t∆ag(x) ≥ 0 (t, a > 0, x ∈ R).

By (3.23), we obtain that Ag = [0,∞) and the function ∆ag(x) is non-
decreasing for all a > 0, which implies that ∆ag ∈ BV for all a > 0. Then by
de Bruijn’s Theorem 3.3 [2], there exist a function f : R→ R and an additive
function A : R → R, such that f ∈ BV and g = f + A. Since ∆t∆aA(x) = 0
(t, a > 0, x ∈ R), it follows that ∆t∆af(x) = ∆t∆ag(x) ≥ 0 (t, a > 0, x ∈ R),
which implies that ∆2

af(x) ≥ 0 for all a > 0, consequently, f is Jensen con-
vex. Since f ∈ BV , we have that f is locally bounded at all x ∈ R. Then by
theorem of Bernstein-Doetsch (cf. [3]), we obtain that f is convex. �

We give a new proof of Szostok–Balcerowski’s theorem [1, Theorem 1].

Theorem 3.5 (Szostok–Balcerowski’s theorem [1, Theorem 1]). Let g : I →
R be a function. Then the following statements are equivalent:
(a) for every a > 0 the function ga is monotonic,
(b) for every a > 0 the function ga is non-increasing or for every a > 0 the

function ga is non-decreasing.

Proof. Assume that (a) is satisfied, for every a > 0 the function ga is
monotonic, which implies that for every a > 0, ga ∈ BV . Then, by de Bruijn’s
Theorem 3.3 [2], there exist a function f : I → R and an additive function
A : R → R such that f ∈ BV and g = f + A. Since for every a > 0 the
function ga is monotonic, it follows that for every a > 0, ∆t∆ag(x) ≥ 0 for all
t > 0, x ∈ I ∩ (I − a− t), or ∆t∆ag(x) ≤ 0 for all t > 0, x ∈ I ∩ (I − a− t).
Since g = f +A and ∆t∆aA(x) = 0 for all t, a > 0, x ∈ R, we obtain that for
every a > 0, ∆t∆af(x) ≥ 0 for all t > 0, x ∈ I ∩ (I − a− t), or ∆t∆af(x) ≤ 0
for all t > 0, x ∈ I ∩ (I − a− t). This implies that for every a > 0, a ∈ Af or
a ∈ Bf , in other words, we have that Af ∪Bf = [0,∞). By Theorem 3.2, we
obtain that either Af = [0,∞) and Bf = {0} or Bf = [0,∞) and Af = {0}
or Af = Bf = [0,∞). Thus, we have that condition (b) is satisfied. The proof
(b) ⇒ (a) is obvious. �
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Remark 3.6. It follows immediately from Theorem 3.5 the version of
Theorem 3.5 with conditions (a′) for every a > 0 the function ga is strictly
monotonic and (b′) for every a > 0 the function ga is strictly increasing or for
every a > 0 the function ga is strictly decreasing, in place of conditions (a),
(b), answering positively the problem of T. Szostok [8, 9].

In the following theorem, we give a generalization of Theorem 3.5.

Theorem 3.7. Let g : R → R be a function such that g is of the form
g = f + A, where f ∈ BV and A is an additive function. Let S ⊂ [0,∞)
be a closed additive semigroup such that S ∩ (0,∞) 6= ∅. Then the following
statements are equivalent:
(a) for every a ∈ S the function ga is monotonic,
(b) for every a ∈ S the function ga is non-increasing or for every a ∈ S the

function ga is non-decreasing.

Proof. Note that the function ga is non-increasing (non-decreasing) if
and only if fa is non-increasing (non-decreasing). Therefore, it is enough to
prove the theorem for g = f ∈ BV . Moreover, conditions (a) and (b) are
equivalent to the following conditions (a’) and (b’) (respectively).
(a’) S ⊂ Af ∪Bf .
(b’) S ⊂ Af or S ⊂ Bf .
By Theorem 3.2, two cases may occur: either (C1) Af ∪ Bf = Af = Bf or
(C2) Af ∪Bf = Af or Af ∪Bf = Bf .

Let us assume that the case (C1) occurs: Af ∪ Bf = Af = Bf . If (a’) is
satisfied, then S ⊂ Af ∪ Bf = Af = Bf , which implies S ⊂ Af and S ⊂ Bf ,
thus (b’) is satisfied. Conversely, assume that (b’) is satisfied, S ⊂ Af =
Af ∪ Bf or S ⊂ Bf = Af ∪ Bf , then obviously S ⊂ Af ∪ Bf , and (a’) is
satisfied.

Let us assume that the case (C2) occurs: Af ∪Bf = Af or Af ∪Bf = Bf .
Assume (a’), i.e. S ⊂ Af ∪ Bf . Then if Af ∪ Bf = Af , then S ⊂ Af , and if
Af ∪ Bf = Bf , then S ⊂ Bf , thus (b’) is satisfied. Conversely, assume that
(b’) is satisfied: S ⊂ Af or S ⊂ Bf . Assume, S ⊂ Af . Then, taking into
account that Af ∪ Bf = Af or Af ∪ Bf = Bf , we obtain S ⊂ Af ∪ Bf , and
(a’) is satisfied. Similarly, if S ⊂ Bf , then (a’) is satisfied. �

Remark 3.8. If S = [0,∞), then Theorem 3.5 is a special case of Theo-
rem 3.7, but if S = [0,∞), there is no need to assume additionally that g is of
the form g = f + A (where f ∈ BV and A is an additive function), because
this condition on the form of g can be proved if (a) is satisfied as well if (b) is
satisfied.
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Remark 3.9. Is S = [0,∞) the only closed additive semigroup such that
to prove that conditions (a) and (b) in Theorem 3.7 are equivalent, there is no
need to assume additionally that g is of the form g = f + A (where f ∈ BV
and A is an additive function)?
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