Lucas and Frobenius pseudoprimes



Abstract

We define several types of Lucas and Frobenius pseudoprimes and prove some theorems on these pseudoprimes. In particular: There exist infinitely many arithmetic progressions formed by three different Frobenius-Fibonacci pseudoprimes.


1. R. Baillie, S. Wagstaff Jr., Lucas pseudoprimes, Math. of Comput. 35 (1980), 1391-1417.
2. T. Banachiewicz, O związku pomiędzy pewnym twierdzeniem matematyków chińskich a formą Fermata na liczby pierwsze, Spraw. Tow. Nauk., Warszawa, 2 (1909), 7-11.
3. N.G.W.H. Beeger, On even numbers m dividing 2^m-2, Amer. Math. Monthly 58 (1951), 553-555.
4. R.E. Crandall, C. Pomerance, Prime Numbers. A Computational Perspective, Springer, New York 2001.
5. L.E. Dickson, History of the Theory of Numbers, vol. I: Divisibility and Primality, Carnegie Inst., Washington 1919.
6. K. Dilcher, Fermat numbers, Wieferich and Wilson primes: Computations and gene­rations, Proc. Conf. on Computational Number Theory and Public Key Cryptography, Warsaw. Sept. 2000, 1-22.
7. P. Erdős, On almost prunes, Amer. Math. Monthly 57 (1950), 404-407.
8. P. Erdős, P. Kiss, A. Sárközy, Lower bound for the counting function of Lucas pseudoprimes, Math. of Comput. 51 (1988), 315-323.
9. J.F. Grantham, Frobenius pseudoprimes, University of Georgia, Athens GA. 1997 (dis­ sertation).
10. J.F. Grantham, Frobenius pseudoprimes, Math. of Comput. 70 (2001), 871-891.
11. R.K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, New York 1994.
12. M. Křížek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers, From Number Theory to Geometry, Springer-Verlag, New York 2001.
13. R.G.E. Pinch, The pseudoprimes up to 10^{13} , Algorithmic Number Theory, 4th International Symposium, ANTS-IV Leiden, The Netherlands, 2-7 July 2000, Proceedings (2000), 459-473.
14. C. Pomerance, J.L. Selfridge, S.S. Wagstaff, The pseudoprimes to 25•10^9, Math. of Comput. 35 (1980), 1003-1026.
15. P. Poulet, Table des nombres composés vérifiant le théoreme de Fermat pour le module 2 jusqu'à 100.000.000, Sphinx 8 (1938), 42-52. Errata in Math. of Comput. 25 (1971), 944-945, Math. of Comput. 26 (1972), 814.
16. P. Ribenboim, The new Book of Prime Number Records, Springer, New York 1996.
17. A. Rotkiewicz, On the pseudoprimes of the form ax+b with respect to the sequence of Lehmer, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 20 (1972), 83-85.
18. A. Rotkiewicz, On the pseudoprimes with respect to the Lucas sequence, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 21 (1973), 793-797.
19. A. Rotkiewicz, On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L, Q in arithmetic progression, Math. of Comput. 39 (1982), 239-247.
20. A. Rotkiewicz, On strong Lehmer pseudoprimes in the case, of negative discriminant in arithmetic progressions, Acta Arithm. 68 (1994), 145-151.
21. A. Rotkiewicz, There are infinitely many arithmetical progressions formed by three dif­ferent Fibonacci pseudoprimes, Applications of Fibonacci Numbers, Vol. 7, Ed. by G.E. Bergum, A.N. Philippou and A.F. Horadam. Kluwer Academic Publishers, Dordrecht, the Netherlands 1998, 327-332.
22. A. Rotkiewicz, Arithmetical progression formed by Lucas pseudoprimes, in: Number Theory, Diophantine, Computational and Algebraic Aspects, Eds: Győrgy Kálmán, Attila Pethő and Vera T. Sós. Walter de Gruyter GmbH & Co., Berlin, New York 1998, pp. 465-472.
23. A. Rotkiewicz, Lucas pseudoprimes, Funct. Approximatio Comment. Math. 28 (2000), 97-104.
24. A. Rotkiewicz, A. Schinzel, Lucas pseudoprimes with a prescribed value of the Jacobi symbol, Bull. Polish Acad. Sci. Math. 48 (2000), 77-80.
25. A. Rotkiewicz, K. Ziemak, On even pseudoprimes, The Fibonacci Quarl. 33 (1995), 123-125.
26. M. Yorinaga, On a congruental property of Fibonacci numbers. Numerical experiments. Considerations and Remarks, Math. J. Okayama Univ. 19 (1976), 5-10, 11-17.
27. Z. Zhang, Finding strong pseudoprimes to several bases, Math. of Comput. 70 (2000), 863-872.
Download

Published : 2003-09-30


RotkiewiczA. (2003). Lucas and Frobenius pseudoprimes. Annales Mathematicae Silesianae, 17, 17-39. Retrieved from https://www.journals.us.edu.pl/index.php/AMSIL/article/view/14098

Andrzej Rotkiewicz  rotkiewi@impan.gov.pl
Instytut Matematyki, Polska Akademia Nauk  Poland



The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.

  1. License
    This journal provides immediate open access to its content under the Creative Commons BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license.
  2. Author’s Warranties
    The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s.
  3. User Rights
    Under the Creative Commons Attribution license, the users are free to share (copy, distribute and transmit the contribution) and adapt (remix, transform, and build upon the material) the article for any purpose, provided they attribute the contribution in the manner specified by the author or licensor.
  4. Co-Authorship
    If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.