On some properties of quadratic stochastic processes
Abstract
In this paper we prove that every measurable quadratic stochastic process X : RN×Ω→R is continuous and has the form
X(x,·) = Σi,j=1NxixjYi,j(·) (a.e.),
where x = (x1,...,xN)∈RN and Yi,j: Ω→R are random variables. Moreover, we give a proof of the stability of the quadratic stochastic processes.
References
1. F. Bernstein, G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Ann. 76 (1915), 514-526.
2. P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
3. P.R. Halmos, Measure theory, Van Nostrand, New York, 1950.
4. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
5. S. Kurepa, On the quadratic functional, Publ. Inst. Math. (Beograd) 13 (1959), 57-72.
6. S. Kurepa, A cosine functional equation in Hilbert space, Canad. J. Math 12 (1960), 45-50.
7. B. Nagy, On a generalization of the Cauchy equation, Aequationes Math. 10 (1974), 165-171.
8. K. Nikodem, On convex stochastic processes, Aequationes Math. 20 (1980), 184-197.
9. K. Nikodem, On quadratic stochastic processes, Aequationes Math. 21 (1980), 192-199.
10. A. Ostrowski, Über die Funktionalgleichung der Exponentialfunktion und verwandte Funktionalgleichungen, Jahresber. Deutsch. Math.-Verein. 38 (1929), 54-62.
11. W. Sierpiński, Sur les fonctions convexes measurables, Fund. Math. 1 (1920), 125-128.
2. P.W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
3. P.R. Halmos, Measure theory, Van Nostrand, New York, 1950.
4. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224.
5. S. Kurepa, On the quadratic functional, Publ. Inst. Math. (Beograd) 13 (1959), 57-72.
6. S. Kurepa, A cosine functional equation in Hilbert space, Canad. J. Math 12 (1960), 45-50.
7. B. Nagy, On a generalization of the Cauchy equation, Aequationes Math. 10 (1974), 165-171.
8. K. Nikodem, On convex stochastic processes, Aequationes Math. 20 (1980), 184-197.
9. K. Nikodem, On quadratic stochastic processes, Aequationes Math. 21 (1980), 192-199.
10. A. Ostrowski, Über die Funktionalgleichung der Exponentialfunktion und verwandte Funktionalgleichungen, Jahresber. Deutsch. Math.-Verein. 38 (1929), 54-62.
11. W. Sierpiński, Sur les fonctions convexes measurables, Fund. Math. 1 (1920), 125-128.
NikodemK. (1990). On some properties of quadratic stochastic processes. Annales Mathematicae Silesianae, 3, 58-69. Retrieved from https://www.journals.us.edu.pl/index.php/AMSIL/article/view/14303
Kazimierz Nikodem
Filia Politechniki Łódzkiej w Bielsku-Białej Poland
Filia Politechniki Łódzkiej w Bielsku-Białej Poland
The Copyright Holders of the submitted text are the Author and the Journal. The Reader is granted the right to use the pdf documents under the provisions of the Creative Commons 4.0 International License: Attribution (CC BY). The user can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose.
- License
This journal provides immediate open access to its content under the Creative Commons BY 4.0 license (http://creativecommons.org/licenses/by/4.0/). Authors who publish with this journal retain all copyrights and agree to the terms of the above-mentioned CC BY 4.0 license. - Author’s Warranties
The author warrants that the article is original, written by stated author/s, has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author/s. - User Rights
Under the Creative Commons Attribution license, the users are free to share (copy, distribute and transmit the contribution) and adapt (remix, transform, and build upon the material) the article for any purpose, provided they attribute the contribution in the manner specified by the author or licensor. - Co-Authorship
If the article was prepared jointly with other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.